Suppr超能文献

超小粒径且粒径分布均匀的前驱体在超高镍单晶正极材料共沉淀法中的应用

Application of precursor with ultra-small particle size and uniform particle distribution for ultra-high nickel single-crystal cathode materials by coprecipitation method.

作者信息

Chen Jiuhua, Feng Shuyao, Deng Junhai, Zhou Yefeng

机构信息

National & Local United Engineering Research Centre for Chemical Process Simulation and Intensification, Chemical Process Simulation and Optimization Engineering Research Center of Ministry of Education, Xiangtan University, Xiangtan 411100, China.

National & Local United Engineering Research Centre for Chemical Process Simulation and Intensification, Chemical Process Simulation and Optimization Engineering Research Center of Ministry of Education, Xiangtan University, Xiangtan 411100, China.

出版信息

J Colloid Interface Sci. 2025 Feb;679(Pt A):798-810. doi: 10.1016/j.jcis.2024.10.025. Epub 2024 Oct 9.

Abstract

Ultra-high nickel single-crystal cathode materials have become the most promising for lithium-ion batteries. However, the preparation of ultra-high nickel single-crystal precursors by a continuous coprecipitation method has the disadvantages of large particle size, wide distribution, poor morphology. The extent of the inhomogeneous reactions can be more severe in single-crystal cathodes with larger particle size. Herein, the coprecipitation method with a solid concentrator was adopted, and citrate sodium was used as a complexing agent to improve the physical properties of precursors and electrochemical performance of single-crystal cathode materials. By analyzing the morphology and agglomeration mechanism of the precursor nucleuses under different pH values, it was found that hexagonal nanosheets grew along the 101 direction, and the primary particles showed thicker at pH of 11.4. The hexagonal nanosheets grew along the 001 direction, and the primary particles showed finer at pH of 12.2. The morphology and particle size uniformity of the secondary particles formed by agglomeration at these two pH values showed poor. However, hexagonal nanosheets grew synergistically along the 001 and 101 directions at pH of 11.8, so the primary particles with uniform particle size gradually agglomerated, and then the secondary particles with ultra-small particle size and uniform distribution obtained. Compared to materials prepared by the traditional continuous coprecipitation method, the precursor displays a smaller particle size(D = 1.8 µm), higher sphericity, uniformity and denser internal structure. In order to evaluate the performance of NiCoMn(OH) with ultra-small particle size, the sintering conditions of LiNiCoMnO need to be explored. It was found that the LiNiCoMnO cathode material prepared at 790 °C exhibited higher discharge capacity, cycle and rate performance, compared to materials prepared at 760 °C and 820 °C. We further utilized TEM, EPMA, and XPS to test the internal structure and valence state of LiNiCoMnO cathode material. The results show that the LiNiCoMnO calcined at 790 °C has a good single crystal structure. The LiNiCoMnO cathode materials inherited the structure and particle size of NiCoMn(OH) precursors, and displayed discharge capacity of 194.7 mAh/g and capacity retention rate of 89.8 % after 100 cycles at 1 C. The microstructure and phase transition of the as-prepared cathode material are well-maintained after long-term cycling, without obvious inter-crystalline micro-crack. The results indicate that its electrochemical performance is better than that of cathode materials with precursors prepared by a continuous coprecipitation method. This work provides new insights for the preparation of small-particle-size precursor and single-crystal cathode materials.

摘要

超高镍单晶正极材料已成为锂离子电池最具潜力的正极材料。然而,采用连续共沉淀法制备超高镍单晶前驱体存在粒径大、分布宽、形貌差等缺点。在粒径较大的单晶正极中,非均相反应的程度可能更严重。在此,采用了带有固体浓缩器的共沉淀法,并使用柠檬酸钠作为络合剂来改善前驱体的物理性能和单晶正极材料的电化学性能。通过分析不同pH值下前驱体晶核的形貌和团聚机理,发现六方纳米片沿101方向生长,在pH为11.4时初级颗粒更厚。六方纳米片沿001方向生长,在pH为12.2时初级颗粒更细。在这两个pH值下通过团聚形成的二次颗粒的形貌和粒径均匀性较差。然而,在pH为11.8时,六方纳米片沿001和101方向协同生长,因此粒径均匀的初级颗粒逐渐团聚,进而获得了粒径超小且分布均匀的二次颗粒。与传统连续共沉淀法制备的材料相比,该前驱体粒径更小(D = 1.8 µm),球形度更高,均匀性更好,内部结构更致密。为了评估超小粒径的NiCoMn(OH)的性能,需要探索LiNiCoMnO的烧结条件。结果发现,与在760℃和820℃制备的材料相比,在790℃制备的LiNiCoMnO正极材料具有更高的放电容量、循环性能和倍率性能。我们进一步利用透射电子显微镜(TEM)、电子探针微分析仪(EPMA)和X射线光电子能谱(XPS)测试了LiNiCoMnO正极材料的内部结构和价态。结果表明,在790℃煅烧的LiNiCoMnO具有良好的单晶结构。LiNiCoMnO正极材料继承了NiCoMn(OH)前驱体的结构和粒径,在1 C下100次循环后放电容量为194.7 mAh/g,容量保持率为89.8%。长期循环后,所制备的正极材料的微观结构和相变得到良好保持,没有明显的晶间微裂纹。结果表明,其电化学性能优于采用连续共沉淀法制备前驱体的正极材料。这项工作为制备小粒径前驱体和单晶正极材料提供了新的思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验