Department of Computer Science and Engineering, SRMIST Ramapurm, Chennai -600 089, Tamil Nadu, India.
Department of Biotechnology, P.S.R. Engineering College, Sivakasi 626140, India.
Mar Pollut Bull. 2024 Dec;209(Pt A):117106. doi: 10.1016/j.marpolbul.2024.117106. Epub 2024 Oct 10.
Few studies have effectively shown how to use satellites that gather optical data to monitor plastic debris in the marine environment. For the first time, floating macro-plastics distinguishable from seaweed are identified in optical data from the European Space Agency's Sentinel-2 satellites. Case studies from three Brazilian areas, selected for suspected macro-plastics in Sentinel-2 data, utilized a unique Floating Debris Index (FDI) for the Sentinel-2 Multi-Spectral Instrument (MSI) to detect surface material patches. Sub-pixel-scale detection revealed macro-plastics mixed with seaweed and sea foam. Using a Machine Learning-based Naive Bayes algorithm, we classified materials and identified macro-plastics, achieving an 87.25 % accuracy in identifying suspected plastics. Temporal analysis tracked plastic debris movement and accumulation. This methodology is scalable and transferable, with potential applications for monitoring marine plastic pollution in other coastal regions globally.
鲜有研究能够有效展示如何利用获取光学数据的卫星来监测海洋环境中的塑料碎片。欧洲航天局的“哨兵-2”卫星的光学数据首次识别出可与海藻区分开来的漂浮大型塑料。从三个巴西地区选取了疑似“哨兵-2”数据中存在大型塑料的案例研究,利用“哨兵-2”多光谱仪器(MSI)的独特漂浮碎片指数(FDI)来探测海面物质斑块。亚像素级探测揭示了与海藻和海沫混合在一起的大型塑料。我们使用基于机器学习的朴素贝叶斯算法对材料进行分类,识别出大型塑料,在识别疑似塑料方面的准确率达到 87.25%。时间分析跟踪了塑料碎片的移动和积聚。这种方法具有可扩展性和可转移性,有望在全球其他沿海地区应用于监测海洋塑料污染。