Suppr超能文献

评估铬矿区的饮用水水质并识别污染源。

Assessment of drinking water quality and identifying pollution sources in a chromite mining region.

机构信息

Research Center for Social Determinants of Health, Jahrom University of Medical Sciences, Jahrom, Iran.

Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.

出版信息

J Hazard Mater. 2024 Dec 5;480:136050. doi: 10.1016/j.jhazmat.2024.136050. Epub 2024 Oct 4.

Abstract

Water sources near mining regions are often susceptible to contamination from toxic elements. This study employs machine learning (ML) techniques to evaluate drinking water quality and identify pollution sources near a chromite mine in Iran. Human health risks were assessed using both deterministic and probabilistic approaches. Findings revealed that concentrations of calcium (Ca), chromium (Cr), lithium (Li), magnesium (Mg), and sodium (Na) in the water samples exceeded international safety standards. The Unweighted Root Mean Square water quality index (RMS-WQI) and Weighted Quadratic Mean (WQM-WQI) categorized all water samples as 'Fair', with average scores of 67.95 and 67.19, respectively. Of the ML models tested, the Extra Trees (ET) algorithm emerged as the top predictor of WQI, with Mg and strontium (Sr) as key variables influencing the scores. Principal component analysis (PCA) identified three distinct clusters of water quality parameters, highlighting influences from both local geology and anthropogenic activities. The highest average hazard quotient (HQ) for Cr was 1.71 for children, 1.27 for adolescents, and 1.05 for adults. Monte Carlo simulation for health risk assessment indicated median hazard index (HI) of 4.48 for children, 3.58 for teenagers, and 2.98 for adults, all exceeding the acceptable threshold of 1. Total carcinogenic risk (TCR) exceeded the EPA's acceptable level for 99.38 % of children, 98.24 % of teenagers, and 100 % of adults, with arsenic (As) and Cr identified as the main contributors. The study highlights the need for urgent mitigation measures, recommending a 99 % reduction in concentrations of key contaminants to lower both carcinogenic and non-carcinogenic risks to acceptable levels.

摘要

矿区附近的水源通常容易受到有毒元素的污染。本研究采用机器学习 (ML) 技术评估伊朗铬矿区附近的饮用水水质并识别污染源。使用确定性和概率两种方法评估人类健康风险。结果表明,水样中钙 (Ca)、铬 (Cr)、锂 (Li)、镁 (Mg) 和钠 (Na) 的浓度超过国际安全标准。未加权根均方水质指数 (RMS-WQI) 和加权二次均值 (WQM-WQI) 将所有水样归类为“中等”,平均得分为 67.95 和 67.19。在所测试的 ML 模型中,Extra Trees (ET) 算法成为 WQI 的最佳预测器,Mg 和锶 (Sr) 是影响分数的关键变量。主成分分析 (PCA) 确定了水质参数的三个不同聚类,突出了当地地质和人为活动的影响。Cr 的平均危害商 (HQ) 最高值为儿童 1.71,青少年 1.27,成人 1.05。健康风险评估的蒙特卡罗模拟表明,儿童的中位危害指数 (HI) 为 4.48,青少年为 3.58,成人 2.98,均超过 1 的可接受阈值。总致癌风险 (TCR) 超过了 EPA 对 99.38%的儿童、98.24%的青少年和 100%的成年人的可接受水平,砷 (As) 和 Cr 被确定为主要贡献者。该研究强调了迫切需要采取缓解措施,建议将关键污染物的浓度降低 99%,以将致癌和非致癌风险降低到可接受水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验