Ohki Yuto, Mochizuki Masahito
Department of Applied Physics, Waseda University, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 229-8558, Japan.
J Phys Condens Matter. 2024 Oct 21;37(2). doi: 10.1088/1361-648X/ad861b.
Magnetic skyrmions are topological spin textures that appear in magnets with broken spatial inversion symmetry as a consequence of competition between the (anti)ferromagnetic exchange interactions and the Dzyaloshinskii-Moriya interactions in a magnetic field. In the research of spintronics, the current-driven dynamics of skyrmions has been extensively studied aiming at their applications to next-generation spintronic devices. However, current-induced skyrmion motion exhibits diverse behaviors depending on various factors and conditions such as the type of skyrmion, driving mechanism, system geometry, direction of applied current, and type of the magnet. While this variety attracts enormous research interest of fundamental science and enriches their possibilities of technical applications, it is, at the same time, a source of difficulty and complexity that hinders their comprehensive understandings. In this article, we discuss fundamental and systematic theoretical descriptions of current-induced motion of skyrmions driven by the spin-transfer torque and the spin-orbit torque. Specifically, we theoretically describe the behaviors of current-driven skyrmions depending on the factors and conditions mentioned above by means of analyses using the Thiele equation. Furthermore, the results of the analytical theory are visually demonstrated and quantitatively confirmed by micromagnetic simulations using the Landau-Lifshitz-Gilbert-Slonczewski equation. In particular, we discuss dependence of the direction and velocity of motion on the type of skyrmion (Bloch type and Néel type) and its helicity, the system geometry (thin plate and nanotrack), the direction of applied current (length and width direction of the nanotrack) and its spin-polarization orientation, and the type of magnet (ferromagnet and antiferromagnet). The comprehensive theory provided by this article is expected to contribute significantly to research on the manipulation and control of magnetic skyrmions by electric currents for future spintronics applications.
磁斯格明子是一种拓扑自旋纹理,出现在空间反演对称性破缺的磁体中,这是由于(反)铁磁交换相互作用与磁场中的Dzyaloshinskii-Moriya相互作用之间的竞争所致。在自旋电子学研究中,针对斯格明子在下一代自旋电子器件中的应用,人们对其电流驱动动力学进行了广泛研究。然而,电流诱导的斯格明子运动表现出多种行为,这取决于各种因素和条件,如斯格明子的类型、驱动机制、系统几何形状、外加电流方向以及磁体类型。虽然这种多样性吸引了基础科学的巨大研究兴趣并丰富了它们在技术应用方面的可能性,但与此同时,它也是阻碍人们全面理解的困难和复杂性的根源。在本文中,我们讨论了由自旋转移力矩和自旋轨道力矩驱动的电流诱导斯格明子运动的基本和系统的理论描述。具体而言,我们通过使用蒂勒方程进行分析,从理论上描述了电流驱动斯格明子的行为如何取决于上述因素和条件。此外,通过使用朗道-里夫希茨-吉尔伯特-斯隆切夫斯基方程的微磁模拟,直观地展示并定量地证实了分析理论的结果。特别是,我们讨论了运动方向和速度对斯格明子类型(布洛赫型和尼尔型)及其螺旋度、系统几何形状(薄板和纳米轨道)、外加电流方向(纳米轨道的长度和宽度方向)及其自旋极化取向以及磁体类型(铁磁体和反铁磁体)的依赖性。本文提供的综合理论有望为未来自旋电子学应用中通过电流对磁斯格明子进行操纵和控制的研究做出重大贡献。