Suppr超能文献

叶酸功能化且乙酰基封端的树枝状大分子作为索拉非尼和5-氟尿嘧啶共递送的纳米载体

Folic acid-functionalized and acetyl-terminated dendrimers as nanovectors for co-delivery of sorafenib and 5-fluorouracil.

作者信息

Mezher Ali Hussein, Salehpour Mahboobeh, Saadati Zohreh

机构信息

Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran.

出版信息

Arch Biochem Biophys. 2024 Dec;762:110176. doi: 10.1016/j.abb.2024.110176. Epub 2024 Oct 10.

Abstract

Molecular dynamics (MD) simulations were employed to investigate the simultaneous association of sorafenib (SF) and 5-fluorouracil (5-FU) with generation 4 (G4) acetyl-terminated poly(amidoamine) (PAMAM) dendrimers conjugated with folic acid (G4ACE-FA). Simulations were conducted under physiological (pH 7.4) and acidic (pH < 5) conditions, representing the environments of healthy and cancerous cells, respectively. The average radius of gyration (R) of G4ACE-FA was determined to be approximately 1.85 ± 0.01 nm and 2.31 ± 0.03 nm under physiological and acidic conditions, respectively. Drug loading did not exert a significant influence on the size and conformational compactness of G4ACE-FA at both neutral and low pH. However, a discernible increase in dendrimer size was observed upon simultaneous encapsulation and/or conjugation of both drug molecules. The relaxation times of G4ACE-FA were calculated to be 10.2 ns and 9.6 ns at neutral and low pH, respectively, indicating comparable equilibrium rates under both pH environments. The incorporation of small 5-FU molecules did not demonstrably alter the dendrimer's microstructure. The observed doubling of the relaxation time under acidic conditions can be attributed to the relatively compact structure of the dendrimer at neutral pH and the continuous intrastructural rearrangements occurring at acidic pH. The prolonged relaxation time observed in the G4ACE-FA:5-FU:SF complex is attributed to competitive interactions between 5-FU and SF molecules during simultaneous encapsulation by the dendrimer. Analysis of the unloaded and loaded structures of G4ACE-FA under varying pH conditions revealed a densely packed conformation at neutral pH and a more open, sponge-like structure at low pH. The solvent-accessible surface area (SASA) of the dendrimer was assessed at both pH conditions. At neutral pH, SASA values were approximately 124.0 ± 2.8 nm, 127.5 ± 2.6 nm, 131.3 ± 2.6 nm, and 133.3 ± 2.6 nm for unloaded G4ACE-FA and the G4ACE-FA:5-FU, G4ACE-FA:SF, and G4ACE-FA:5-FU:SF complexes, respectively. Drug incorporation had a minimal effect on SASA at neutral pH. At low pH, the corresponding values were 198.2 ± 4.7 nm, 195.8 ± 4.8 nm, 212.5 ± 6.1 nm, and 215.4 ± 4.2 nm. These findings suggest that 5-FU encapsulation resulted in minimal changes to the dendrimer's surface exposure to the solvent, potentially due to its small size. In contrast, SF interaction led to a more pronounced increase in SASA, indicating structural expansion to accommodate SF conjugation. The equilibrium stoichiometry of the G4ACE-FA:5-FU complex was determined to be 1:11 and 1:3 at neutral and low pH, respectively. Similarly, the G4ACE-FA:SF complex exhibited equilibrium stoichiometries of 1:10 and 1:4 at neutral and low pH. The G4ACE-FA:5-FU:SF complex displayed stoichiometries of 1:11:10 at neutral pH and 1:3:3 at low pH. Collectively, these findings suggest that G4ACE-FA holds promise as a versatile nanovector capable of tightly binding drug molecules at neutral pH and facilitating their release within tumor cells, thereby enabling targeted drug delivery. Furthermore, the co-loading of 5-FU and SF did not compromise the loading capacity of G4ACE-FA. At neutral pH, 5-FU molecules were distributed evenly across the dendrimer surface and within its cavities, with 6 molecules encapsulated internally and 5 conjugated on the surface. At low pH, all bound 5-FU molecules were located at the dendrimer periphery. Similarly, at neutral pH, SF molecules were found both internally (6 molecules) and on the surface (4 molecules). At low pH, 2 SF molecules were found on the surface and 2 were internally complexed. The preferred binding sites of 5-FU and SF remained largely unchanged when co-loaded onto the dendrimer. This suggests that co-delivery of 5-FU and SF using G4ACE-FA could be a promising strategy for enhancing the therapeutic efficacy of these chemotherapeutic agents.

摘要

采用分子动力学(MD)模拟研究索拉非尼(SF)和5-氟尿嘧啶(5-FU)与第4代(G4)叶酸共轭乙酰化端基聚酰胺-胺(PAMAM)树枝状大分子(G4ACE-FA)的同时缔合。模拟分别在生理条件(pH 7.4)和酸性条件(pH < 5)下进行,分别代表健康细胞和癌细胞的环境。G4ACE-FA在生理条件和酸性条件下的平均回转半径(R)分别确定为约1.85±(0.01)nm和2.31±(0.03)nm。在中性和低pH条件下,药物负载对G4ACE-FA的大小和构象紧密性均未产生显著影响。然而,在同时包封和/或缀合两种药物分子后,观察到树枝状大分子的大小有明显增加。G4ACE-FA在中性和低pH条件下的弛豫时间分别计算为10.2 ns和9.6 ns,表明在两种pH环境下具有可比的平衡速率。小的5-FU分子的掺入并未明显改变树枝状大分子的微观结构。在酸性条件下观察到的弛豫时间加倍可归因于树枝状大分子在中性pH下相对紧凑的结构以及在酸性pH下发生的持续的结构内重排。在G4ACE-FA:5-FU:SF复合物中观察到的延长的弛豫时间归因于在树枝状大分子同时包封过程中5-FU和SF分子之间的竞争性相互作用。对不同pH条件下G4ACE-FA的空载和负载结构的分析表明,在中性pH下为紧密堆积构象,在低pH下为更开放的海绵状结构。在两种pH条件下均评估了树枝状大分子的溶剂可及表面积(SASA)。在中性pH下,空载G4ACE-FA以及G4ACE-FA:5-FU、G4ACE-FA:SF和G4ACE-FA:5-FU:SF复合物的SASA值分别约为124.0±(2.8)nm、127.5±(2.6)nm、131.3±(2.6)nm和133.3±(2.6)nm。在中性pH下药物掺入对SASA的影响最小。在低pH下,相应的值分别为198.2±(4.7)nm、195.8±(4.8)nm、212.5±(6.1)nm和2×15.4±(4.2)nm。这些发现表明,5-FU的包封对树枝状大分子暴露于溶剂的表面影响最小,这可能是由于其尺寸较小。相比之下,SF的相互作用导致SASA有更明显的增加,表明结构扩展以适应SF的缀合。G4ACE-FA:5-FU复合物在中性和低pH下的平衡化学计量分别确定为1:11和1:3。同样,G4ACE-FA:SF复合物在中性和低pH下的平衡化学计量分别为1:10和1:4。G4ACE-FA:5-FU:SF复合物在中性pH下的化学计量为1:11:10,在低pH下为1:3:3。总体而言,这些发现表明G4ACE-FA有望成为一种通用的纳米载体,能够在中性pH下紧密结合药物分子并促进其在肿瘤细胞内释放,从而实现靶向给药。此外,5-FU和SF的共负载并未损害G4ACE-FA的负载能力。在中性pH下,5-FU分子均匀分布在树枝状大分子表面及其腔内,内部包封6个分子,表面缀合5个分子。在低pH下,所有结合的5-FU分子都位于树枝状大分子的外围。同样,在中性pH下,SF分子既存在于内部(6个分子)也存在于表面(4个分子)。在低pH下,表面发现2个SF分子,内部有2个形成复合物。当5-FU和SF共负载到树枝状大分子上时,它们的优先结合位点基本保持不变。这表明使用G4ACE-FA共递送5-FU和SF可能是提高这些化疗药物治疗效果的一种有前景的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验