Suppr超能文献

城市绿地对空气质量的影响:不同气候条件下 PM10 减排的研究。

Impact of urban green spaces on air quality: A study of PM10 reduction across diverse climates.

机构信息

Strategic Landscape Planning and Management, School of Life Sciences, Weihenstephan, Technische Universität München, Emil-Ramann-Str. 6, 85354 Freising, Germany.

Institute of Forestry and Environmental Sciences, University of Chittagong, Chittagong, Bangladesh.

出版信息

Sci Total Environ. 2024 Dec 10;955:176770. doi: 10.1016/j.scitotenv.2024.176770. Epub 2024 Oct 10.

Abstract

Urban areas face high particulate matter (PM10) levels, increasing the risk of respiratory and cardiovascular diseases. Green spaces can significantly reduce PM10 concentration, as shown at various scales, from boroughs to whole cities. However, long-term monitoring is needed to understand the specific mechanisms and cumulative impact of green spaces on air quality to changing pollution levels. We investigated the influence of neighbourhood green space percentage, climatic variables, and population density on PM10 deposition during the vegetation period across eight cities in contrasting climate zones over 20 years (2000-2020). We used a correlation matrix, generalized additive model, one-way ANOVA, and Tukey HSD test to analyze the impact of these factors on PM10 deposition rates, assess the role of green space percentage in reducing it, and identify significant differences in PM10 parameters at different proximities to emission sources. Cities with higher population density in warmer, drier climates had higher PM levels, since land surface temperature and wind pressure positively correlated with PM10 deposition, while relative humidity showed a negative correlation. The study found significantly higher PM10 concentrations in industrial areas (36.25 μg/m³) than in roadside areas (25.73 μg/m³) and parks (20.17 μg/m³) (p < 0.01). This highlights the need for targeted interventions in different zones. The study found a complex relationship between green space percentage and PM10 deposition rate onto plant surfaces. Our model suggests that at least 27% of green spaces as land cover can significantly reduce the particulate matter flux, although the minimum threshold can vary depending on the specific urban contexts. The study focused on the proportionate cover of green spaces; still, further investigation including quantitative aspects of urban surface forms, and traffic emissions can comprehend the climatic context and determine the optimal extent of green space required for strategic planning toward future urban sustainability initiatives.

摘要

城市地区面临着高颗粒物(PM10)水平,增加了患呼吸道和心血管疾病的风险。绿色空间可以显著降低 PM10 浓度,这在从行政区到整个城市的各种规模上都得到了证明。然而,需要进行长期监测,以了解绿色空间对空气质量的具体机制和累积影响,以及不断变化的污染水平。我们研究了 20 年来(2000-2020 年) 8 个气候带差异明显的城市中,在植被期,邻域绿色空间百分比、气候变量和人口密度对 PM10 沉积的影响。我们使用相关矩阵、广义加性模型、单向方差分析和 Tukey HSD 检验来分析这些因素对 PM10 沉积速率的影响,评估绿色空间百分比在降低 PM10 方面的作用,并确定在不同距离排放源的 PM10 参数的显著差异。在温暖、干燥气候条件下人口密度较高的城市,PM 水平较高,因为地面温度和气压与 PM10 沉积呈正相关,而相对湿度呈负相关。研究发现,工业区的 PM10 浓度明显高于路边地区(25.73μg/m³)和公园(20.17μg/m³)(p<0.01)。这突出表明需要在不同区域采取有针对性的干预措施。研究发现,绿色空间百分比与植物表面 PM10 沉积速率之间存在复杂关系。我们的模型表明,至少 27%的绿地覆盖率可以显著减少颗粒物通量,尽管具体的城市环境可能会有所不同。研究侧重于绿色空间的比例覆盖;然而,包括城市表面形态和交通排放的定量方面的进一步研究,可以理解气候背景并确定未来城市可持续性计划所需的绿色空间的最佳范围。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验