Human Nutrition Program and James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States.
Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210, United States.
ACS Chem Neurosci. 2024 Nov 6;15(21):4010-4020. doi: 10.1021/acschemneuro.4c00370. Epub 2024 Oct 11.
Microglia, the innate immune cell of the brain, are a principal player in Alzheimer's disease (AD) pathogenesis. Their surveillance of the brain leads to interaction with the protein aggregates that drive AD pathogenesis, most notably Amyloid Beta (Aβ). Microglia attempt to clear and degrade Aβ using phagocytic machinery, spurring damaging neuroinflammation in the process. Thus, modulation of the microglial response to Aβ is crucial in mitigating AD pathophysiology. SCFAs, microbial byproducts of dietary fiber fermentation, are blood-brain barrier permeable molecules that have recently been shown to modulate microglial function. It is unclear whether propionate, one representative SCFA, has beneficial or detrimental effects on microglia in AD. Thus, we investigated its impact on microglial Aβ response in vitro. Using a multiomics approach, we characterized the transcriptomic, metabolomic, and lipidomic responses of immortalized murine microglia following 1 h of Aβ stimulation, as well as characterizing Aβ phagocytosis and secretion of reactive nitrogen species. Propionate blunted the early inflammatory response driven by Aβ, downregulating the expression of many Aβ-stimulated immune genes, including those regulating inflammation, the immune complement system, and chemotaxis. Further, it reduced the expression of and inflammation-promoting Aβ-binding scavenger receptors such as and in favor of inflammation-dampening , although this led to impaired phagocytosis. Finally, propionate shifted microglial metabolism, altering phospholipid composition and diverting arginine metabolism, resulting in decreased nitric oxide production. Altogether, our data demonstrate a modulatory role of propionate on microglia that may dampen immune activation in response to Aβ, although at the expense of phagocytic capacity.
小胶质细胞是大脑的固有免疫细胞,是阿尔茨海默病(AD)发病机制中的主要参与者。它们对大脑的监测导致与驱动 AD 发病机制的蛋白质聚集物相互作用,尤其是淀粉样蛋白β(Aβ)。小胶质细胞试图使用吞噬机制清除和降解 Aβ,在此过程中引发破坏性的神经炎症。因此,调节小胶质细胞对 Aβ的反应对于减轻 AD 病理生理学至关重要。短链脂肪酸(SCFAs)是膳食纤维发酵的微生物副产物,是可穿透血脑屏障的分子,最近已被证明可调节小胶质细胞的功能。目前尚不清楚丙酸盐(一种代表性的 SCFA)对 AD 中小胶质细胞是否有益或有害。因此,我们研究了它对小胶质细胞 Aβ反应的影响。使用多组学方法,我们描述了在 Aβ刺激 1 小时后,永生化小鼠小胶质细胞的转录组、代谢组和脂质组反应,以及 Aβ吞噬作用和活性氮物种分泌的特征。丙酸盐减弱了 Aβ驱动的早期炎症反应,下调了许多 Aβ刺激的免疫基因的表达,包括调节炎症、免疫补体系统和趋化性的基因。此外,它降低了表达和炎症促进 Aβ结合的清道夫受体的表达,如和,有利于炎症抑制的,尽管这导致吞噬作用受损。最后,丙酸盐改变了小胶质细胞的代谢,改变了磷脂组成,并使精氨酸代谢分流,导致一氧化氮产生减少。总之,我们的数据表明丙酸盐对小胶质细胞具有调节作用,可减轻对 Aβ的免疫激活,但以吞噬能力为代价。