Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia.
Melanoma Institute Australia, Sydney, NSW, Australia.
Mol Cancer. 2024 Oct 11;23(1):228. doi: 10.1186/s12943-024-02146-0.
Immune checkpoint inhibitors (ICIs) have transformed cancer treatment, providing significant benefit to patients across various tumour types, including melanoma. However, around 40% of melanoma patients do not benefit from ICI treatment, and accurately predicting ICI response remains challenging. We now describe a novel and simple approach that integrates immune-associated transcriptome signatures and tumour volume burden to better predict ICI response in melanoma patients. RNA sequencing was performed on pre-treatment (PRE) tumour specimens derived from 32 patients with advanced melanoma treated with combination PD1 and CTLA4 inhibitors. Of these 32 patients, 11 also had early during treatment (EDT, 5-15 days after treatment start) tumour samples. Tumour volume was assessed at PRE for all 32 patients, and at first computed tomography (CT) imaging for the 11 patients with EDT samples. Analysis of the Hallmark IFNγ gene set revealed no association with ICI response at PRE (AUC ROC curve = 0.6404, p = 0.24, 63% sensitivity, 71% specificity). When IFNg activity was evaluated with tumour volume (ratio of gene set expression to tumour volume) using logistic regression to predict ICI response, we observed high discriminative power in separating ICI responders from non-responders (AUC = 0.7760, p = 0.02, 88% sensitivity, 67% specificity); this approach was reproduced with other immune-associated transcriptomic gene sets. These findings were further replicated in an independent cohort of 23 melanoma patients treated with PD1 inhibitor. Hence, integrating tumour volume with immune-associated transcriptomic signatures improves the prediction of ICI response, and suggest that higher levels of immune activation relative to tumour burden are required for durable ICI response.
免疫检查点抑制剂(ICIs)改变了癌症治疗方式,为包括黑色素瘤在内的多种肿瘤类型的患者带来了显著的获益。然而,约 40%的黑色素瘤患者对 ICI 治疗无反应,准确预测 ICI 反应仍然具有挑战性。我们现在描述了一种新的简单方法,该方法整合了免疫相关转录组特征和肿瘤体积负担,以更好地预测黑色素瘤患者对 ICI 的反应。对 32 名接受 PD1 和 CTLA4 抑制剂联合治疗的晚期黑色素瘤患者的预处理(PRE)肿瘤标本进行了 RNA 测序。在这 32 名患者中,有 11 名患者在治疗期间早期(EDT,治疗开始后 5-15 天)也有肿瘤标本。对所有 32 名患者进行了 PRE 肿瘤体积评估,对 11 名有 EDT 样本的患者进行了首次计算机断层扫描(CT)成像。对 Hallmark IFNγ基因集的分析表明,该基因集与 PRE 时的 ICI 反应无关(AUC ROC 曲线=0.6404,p=0.24,63%敏感性,71%特异性)。当使用逻辑回归根据肿瘤体积评估 IFNg 活性(基因集表达与肿瘤体积的比值)以预测 ICI 反应时,我们观察到区分 ICI 反应者和非反应者的高判别能力(AUC=0.7760,p=0.02,88%敏感性,67%特异性);这种方法在另一个由 23 名接受 PD1 抑制剂治疗的黑色素瘤患者组成的独立队列中得到了复制。因此,将肿瘤体积与免疫相关转录组特征相结合可提高对 ICI 反应的预测能力,并表明需要相对肿瘤负担更高水平的免疫激活才能获得持久的 ICI 反应。