Noorani Narmin, Mehrdad Abbas, Shamszadeh Parastoo
Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
Sci Rep. 2024 Oct 11;14(1):23843. doi: 10.1038/s41598-024-75617-5.
Mixed matrix membranes (MMMs), an important class of organic-inorganic nanocomposite membranes, were developed to overcome some of the limitations of purely polymeric membranes. In this study to improve the separation performance of polyvinyl chloride (PVC) membranes, mixed matrix membranes (MMMs) were prepared from incorporating choline prolinate based ionic liquid (IL) in a the coke/metal-organic framework (MOF) (NH-MIL-101(Cr)) as a filler in polyvinyl chloride (PVC), which can be viewed as a potential solution to the trade-off problem with polymeric membranes because of the combination of the processing versatility of polymers and the high gas separation capability. Coke/MOF/PVC and IL@AC/MOF/PVC MMMs with different filler loadings of 5, 10, and 15 wt% were prepared using solution casting method and characterized using Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM) with Energy-Dispersive X-ray Spectroscopy (EDX) analyses, and Brunauer-Emmett-Teller (BET) surface area test. The porous structure of MMMs nanocomposites causes to which coke/MOF composite effectively accelerate gas diffusion in the PVC matrix. The permeability date was measured at 288.15, 298.15, 308.15 and 318.15 K and pressure up to 4 bar for CO and N. According to the outcome, the addition of the IL([Cho][Pro]) filler, the permeability of the AC/MOF/PVC MMMs is increased compared to the pure PVC membrane. The MMMs have the highest gas separation efficiency and performance above Robson's Upper Bound from 2008.
混合基质膜(MMMs)是一类重要的有机-无机纳米复合膜,其开发旨在克服纯聚合物膜的一些局限性。在本研究中,为了提高聚氯乙烯(PVC)膜的分离性能,通过将基于脯氨酸胆碱的离子液体(IL)掺入焦炭/金属有机框架(MOF)(NH-MIL-101(Cr))作为填料加入聚氯乙烯(PVC)中来制备混合基质膜(MMMs),由于聚合物加工的多功能性与高气体分离能力的结合,这可被视为解决聚合物膜权衡问题的潜在方案。使用溶液浇铸法制备了具有5、10和15 wt%不同填料负载量的焦炭/MOF/PVC和IL@AC/MOF/PVC混合基质膜,并通过傅里叶变换红外光谱(FTIR)、热重分析(TGA)、带有能量色散X射线光谱(EDX)分析的扫描电子显微镜(SEM)以及布鲁诺尔-埃米特-泰勒(BET)表面积测试对其进行表征。混合基质膜纳米复合材料的多孔结构使得焦炭/MOF复合材料有效地加速了PVC基质中的气体扩散。在288.15、298.15、308.15和318.15 K以及高达4 bar的压力下测量了CO和N的渗透数据。根据结果,添加IL([Cho][Pro])填料后,AC/MOF/PVC混合基质膜的渗透率相对于纯PVC膜有所提高。这些混合基质膜具有最高的气体分离效率,其性能高于2008年罗布森的上限。