Suppr超能文献

多功能纳米声敏剂工程菌克服肿瘤乏氧用于增强声动力学治疗。

Multi-functional nanosonosensitizer-engineered bacteria to overcome tumor hypoxia for enhanced sonodynamic therapy.

机构信息

Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, Hengyang Medical School, University of South China, Changsha, PR China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, PR China.

Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, PR China; Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, PR China.

出版信息

Acta Biomater. 2024 Nov;189:519-531. doi: 10.1016/j.actbio.2024.10.013. Epub 2024 Oct 10.

Abstract

BACKGROUND

Ultrasound-triggered sonodynamic therapy (SDT), with high safety and acceptance, has become a promising tumor treatment. However, the dense stroma, hypoxic microenvironment of tumor, and the unpredictable treatment timing limit the effectiveness of sonosensitizers and the antitumor therapeutic effect. Thus, it is crucial to develop an imaging-guided sensitization strategy for hypoxic tumor sonosensitization to improve the efficacy of SDT.

METHODS

In this study, we developed a biohybrid system CB@HPP, which genetically engineered bacteria to express catalase (CB) and modified nanosonosensitizers (HPP) to the surface of these bacteria. Tumor hypoxia relief, tumor targeting, biocompatibility, and antitumor efficacy were evaluated through in vitro and in vivo experiments. In addition, the photoacoustic (PA), ultrasound (US), and fluorescence (FL) imaging effects of CB@HPP were evaluated in vivo and in vitro.

RESULTS

After intravenous injection, CB@HPP was able to target tumor tissue. CB@HPP possessed efficient catalase activity and successfully degraded hydrogen peroxide to produce oxygen. Increased oxygen levels relief intratumoral hypoxia, thereby enhancing CB@HPP-mediated. In addition, CB@HPP showed FL/PA/US multimodal imaging capabilities, which reflects the aggregation effect of CB@HPP in the tumor and suggest the timing of treatment.

CONCLUSION

The biohybrid system CB@HPP significantly alleviates tumor hypoxia, and multimodal imaging-mediated oxygen-producing SDT effectively suppresses tumors. This integrated imaging and therapeutic biohybrid system provides a more efficient and attractive cancer treatment strategy for SDT.

STATEMENT OF SIGNIFICANCE

This study developed a sensitizing SDT strategy for imaging-guided drug-targeted delivery and in situ oxygen production. We designed a biohybrid system CB@HPP, which was hybridized by the engineered bacteria with catalytic oxygen production and nanosonosensitizer with multimodal imaging capability. CB@HPP significantly alleviates tumor hypoxia, and multimodal imaging-mediated oxygen-producing SDT effectively suppresses tumors. This integrated imaging and therapeutic biohybrid system provides a more efficient and attractive cancer treatment strategy for SDT.

摘要

背景

超声触发声动力学疗法(SDT)具有高安全性和可接受性,已成为一种有前途的肿瘤治疗方法。然而,肿瘤密集的基质、缺氧的微环境和不可预测的治疗时间限制了声敏剂的有效性和抗肿瘤治疗效果。因此,开发一种用于缺氧肿瘤声敏化的成像引导敏化策略对于提高 SDT 的疗效至关重要。

方法

在本研究中,我们开发了一种生物杂化系统 CB@HPP,该系统通过基因工程使细菌表达过氧化氢酶(CB)并将纳米声敏剂(HPP)修饰到细菌表面。通过体外和体内实验评估了肿瘤缺氧缓解、肿瘤靶向、生物相容性和抗肿瘤疗效。此外,还在体内和体外评估了 CB@HPP 的光声(PA)、超声(US)和荧光(FL)成像效果。

结果

静脉注射后,CB@HPP 能够靶向肿瘤组织。CB@HPP 具有高效的过氧化氢酶活性,可成功将过氧化氢降解为氧气。增加的氧水平缓解了肿瘤内缺氧,从而增强了 CB@HPP 介导的作用。此外,CB@HPP 表现出 FL/PA/US 多模态成像能力,反映了 CB@HPP 在肿瘤中的聚集效应,并提示了治疗时机。

结论

生物杂化系统 CB@HPP 显著缓解了肿瘤缺氧,多模态成像介导的产氧 SDT 有效抑制了肿瘤。这种集成成像和治疗的生物杂化系统为 SDT 提供了一种更有效和有吸引力的癌症治疗策略。

意义声明

本研究开发了一种用于成像引导药物靶向递送和原位产氧的敏化 SDT 策略。我们设计了一种生物杂化系统 CB@HPP,它由具有催化产氧能力的工程细菌和具有多模态成像能力的纳米声敏剂杂交而成。CB@HPP 显著缓解了肿瘤缺氧,多模态成像介导的产氧 SDT 有效抑制了肿瘤。这种集成成像和治疗的生物杂化系统为 SDT 提供了一种更高效和有吸引力的癌症治疗策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验