Du Yonghao, Zhang Shuo, Jia Xiaohui, Zhang Xi, Li Xuqi, Pan Libo, Li Zhihao, Niu Gang, Liang Ting, Guo Hui
Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China (Y.D., S.Z., G.N., T.L.).
Phase I Clinical Trial Ward, The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shaanxi 710004, PR China (X.J., H.G.).
Acad Radiol. 2025 Mar;32(3):1685-1695. doi: 10.1016/j.acra.2024.09.053. Epub 2024 Oct 11.
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of non-small cell lung cancer (NSCLC). However, immune-related adverse events still occur, of which checkpoint inhibitor pneumonitis (CIP) is the most common. We aimed to construct and validate a contrast-enhanced computed tomography-based radiomic nomogram to predict the probability of CIP before ICIs treatment in NSCLC.
We retrospectively analyzed 685 patients with NSCLC who were initially treated with ICIs. A total of 186 patients were included in our study, and an additional 52 patients from another hospital were considered for external validation. After radiomics feature extraction and selection, we applied a support vector machine classification model to distinguish CIP and used the probability as a radiomics signature. A radiomics-clinical logistic regression model was built using the filtered clinical parameters and a radiomic signature. Receiver operating characteristic, area under the curve (AUC), calibration curve, and decision curve analysis was used for inter-model comparison.
The combined radiomics-clinical model constructed using age, interstitial lung disease, emphysema at baseline, and radiomics signature showed an AUC of 0.935, 0.905, and 0.923 for the training, validation, and external validation cohorts, respectively. Compared with the clinical-only (AUC of 0.829, 0.826, and 0.809) and radiomics-only models (0.865, 0.847, and 0.841), the radiomics-clinical displayed better predictive power.
This combined radiomics-clinical model predicted the probability of CIP during ICIs treatment in patients with NSCLC with favorable accuracy and could therefore be used as an effective tool to guide clinical ICIs decisions.
免疫检查点抑制剂(ICI)彻底改变了非小细胞肺癌(NSCLC)的治疗方式。然而,免疫相关不良事件仍会发生,其中检查点抑制剂肺炎(CIP)最为常见。我们旨在构建并验证一种基于对比增强计算机断层扫描的放射组学列线图,以预测NSCLC患者在ICI治疗前发生CIP的概率。
我们回顾性分析了685例最初接受ICI治疗的NSCLC患者。本研究共纳入186例患者,另外52例来自另一家医院的患者用于外部验证。在进行放射组学特征提取和选择后,我们应用支持向量机分类模型区分CIP,并将概率作为放射组学特征。使用经过筛选的临床参数和放射组学特征构建放射组学-临床逻辑回归模型。采用受试者操作特征曲线、曲线下面积(AUC)、校准曲线和决策曲线分析进行模型间比较。
使用年龄、间质性肺疾病、基线肺气肿和放射组学特征构建的联合放射组学-临床模型在训练、验证和外部验证队列中的AUC分别为0.935、0.905和0.923。与仅临床模型(AUC分别为0.829、0.826和0.809)和仅放射组学模型(0.865、0.847和0.841)相比,放射组学-临床模型显示出更好的预测能力。
这种联合放射组学-临床模型能够较好地预测NSCLC患者在ICI治疗期间发生CIP的概率,因此可作为指导临床ICI决策的有效工具。