机器学习对肺癌患者放射性肺炎和检查点抑制剂肺炎的预测价值:一项系统评价和荟萃分析。
Predictive value of machine learning for radiation pneumonitis and checkpoint inhibitor pneumonitis in lung cancer patients: a systematic review and meta-analysis.
作者信息
Wang Shenghan, Wang Kaiyue, Lin Jiangnan
机构信息
Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No. 54 Youdian Rd, Hangzhou, 310006, Zhejiang, China.
First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
出版信息
Sci Rep. 2025 Jul 1;15(1):20961. doi: 10.1038/s41598-025-05505-z.
Some studies have developed machine learning (ML) models for the prediction of pneumonitis following immunotherapy and radiotherapy for patients with lung cancer (LC). However, the prediction accuracy of these models remains a topic of debate. Thus, this study aims to summarize the advantages of ML methods in the early prediction of radiation pneumonitis (RP) and checkpoint inhibitor pneumonitis (CIP) in LC patients. PubMed, Cochrane, Embase, and Web of Science were searched up to March 23, 2025. The Prediction Model Risk of Bias Assessment Tool (PROBAST) was utilized to explore the risk of bias (RoB) in the included studies. A subgroup analysis was conducted based on variables including radiomics, dosiomics, and clinical characteristics. Fifty-six studies comprising 12,803 LC patients were included. Of these, 43 studies focused on the early prediction of RP, 11 studies on CIP, and 2 studies on differentiating RP and CIP. The meta-analysis revealed that the c-index of dosiomics-based models, radiomics-based models, and models based on radiomics and clinical characteristics for predicting RP was 0.82 (95% CI: 0.76-0.87), 0.80 (95% CI: 0.71-0.89), and 0.90 (95% CI: 0.86-0.94), respectively. In the prediction of CIP, the c-index for the clinical characteristics model was 0.83 (95% CI: 0.81-0.85), while the integrated radiomics and clinical characteristics model achieved a c-index of 0.86 (95% CI: 0.80-0.92). The ML-based models exhibit strong performance for predicting RP and CIP. Models that integrate dosiomics and radiomics demonstrate superior predictive performance for RP. In addition, hybrid models combining radiomics with clinical features provide excellent predictive value for CIP.
一些研究已经开发出机器学习(ML)模型,用于预测肺癌(LC)患者接受免疫治疗和放射治疗后的肺炎。然而,这些模型的预测准确性仍然是一个有争议的话题。因此,本研究旨在总结ML方法在早期预测LC患者放射性肺炎(RP)和检查点抑制剂肺炎(CIP)方面的优势。截至2025年3月23日,对PubMed、Cochrane、Embase和Web of Science进行了检索。使用预测模型偏倚风险评估工具(PROBAST)来探讨纳入研究中的偏倚风险(RoB)。基于包括放射组学、剂量组学和临床特征等变量进行了亚组分析。纳入了56项研究,共12803例LC患者。其中,43项研究聚焦于RP的早期预测,11项研究关注CIP,2项研究致力于区分RP和CIP。荟萃分析显示,基于剂量组学的模型、基于放射组学的模型以及基于放射组学和临床特征的模型预测RP的c指数分别为0.82(95%CI:0.76-0.87)、0.80(95%CI:0.71-0.89)和0.90(95%CI:0.86-0.94)。在预测CIP方面,临床特征模型的c指数为0.83(95%CI:0.81-0.85),而放射组学和临床特征综合模型的c指数为0.86(95%CI:0.80-0.92)。基于ML的模型在预测RP和CIP方面表现出强大的性能。整合剂量组学和放射组学的模型对RP具有卓越的预测性能。此外,将放射组学与临床特征相结合的混合模型对CIP具有出色的预测价值。