Suppr超能文献

基于手部人体测量参数的握力和捏力预测模型:一项分析性横断面研究。

Grip and pinch strength prediction models based on hand anthropometric parameters: an analytic cross-sectional study.

机构信息

Student Research Committee, Department of Epidemiology, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.

Orthopedics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.

出版信息

BMC Musculoskelet Disord. 2024 Oct 12;25(1):809. doi: 10.1186/s12891-024-07914-z.

Abstract

BACKGROUND

Hand grip strength (HGS) and pinch strength are important clinical measures for assessing the hand and overall health.

OBJECTIVE

The aim of the present study is to predict HGS and pinch strength based on 1 hand anthropometry, and (2) body anthropometric parameters using machine learning.

METHODS

A Secondary analysis was conducted on 542 participant aged 30-60 years from the Persian Organizational Cohort study in Mashhad University of Medical Sciences. Artificial Neural Network (ANN) were fitted as prediction model. The dataset was divided into two sets: a training set, which comprised 70% of the data, and a test set, which comprised 30% of the data. Various combinations of the hand anthropometric, demographic, and body anthropometric parameters were used to determine the most accurate model.

RESULTS

The optimal HGS model, using the input of gender, body mass, and hand anthropometric parameters of length (both total length and palm), maximum width, maximum breadth, and hand shape index, achieved nearly equal accuracy to the model that incorporated all variables (RMSE = 5.23, Adjusted R = 0.67). As for pinch strength, gender, hand length (both total length and palm), maximum width, maximum breadth, hand shape index, hand span, and middle finger length came closest to the model incorporating all variables (RMSE = 1.20, Adjusted R = 0.52).

CONCLUSION

This ANN model showed that hand anthropometric parameters of total length, palm length, maximum width, maximum breadth, and the hand shape index, emerge as optimal predictors for both HGS and HPS. Body anthropometric factors (e.g., body mass) play roles as predictors for HGS, whereas their influence on pinch strength appears to be less pronounced.

LEVEL OF EVIDENCE

Level III (Diagnosis).

TRIAL REGISTRATION

Not applicable.

摘要

背景

手握力(HGS)和捏力是评估手部和整体健康的重要临床指标。

目的

本研究旨在通过机器学习,基于(1)单手人体测量学和(2)人体测量学参数来预测 HGS 和捏力。

方法

对来自马什哈德医科大学波斯组织队列研究的 542 名 30-60 岁参与者进行了二次分析。人工神经网络(ANN)被拟合为预测模型。数据集分为两组:训练集,包含 70%的数据;测试集,包含 30%的数据。使用单手人体测量学、人口统计学和人体测量学参数的各种组合来确定最准确的模型。

结果

使用性别、体重和手的人体测量参数(总长度和手掌长度)、最大宽度、最大宽度、手形指数的输入,最佳 HGS 模型的准确性与包含所有变量的模型几乎相等(RMSE=5.23,调整后的 R=0.67)。对于捏力,性别、手的总长度(手掌长度)、最大宽度、最大宽度、手形指数、手跨度和中指长度与包含所有变量的模型最为接近(RMSE=1.20,调整后的 R=0.52)。

结论

该 ANN 模型表明,HGS 和 HPS 的最佳预测指标是手的总长度、手掌长度、最大宽度、最大宽度和手形指数的人体测量参数。人体测量学因素(如体重)可作为 HGS 的预测指标,而其对捏力的影响似乎不太明显。

证据水平

三级(诊断)。

试验注册

不适用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a1c/11470731/7db13aad730e/12891_2024_7914_Fig5_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验