Amgen Research, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA.
Amgen Research, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA.
Anal Chim Acta. 2024 Nov 15;1329:343223. doi: 10.1016/j.aca.2024.343223. Epub 2024 Sep 7.
The need for stationary phases with unique selectivity in reversed-phase liquid chromatography has been of utmost importance to chromatographers for advancing the analysis of complex samples. Macrocyclic glycopeptide based stationary phases have been widely used for chiral separations with different chromatographic modes such as normal phase, reversed phase, and supercritical fluid chromatography. Given the multimodal retention mechanisms namely π-π complex interaction, hydrogen bonding, dipole-dipole interaction, and strong Coulombic interactions by which analytes are separated using the macrocyclic glycopeptides, these stationary phases are expected to provide novel selectivity when used under the reversed phase for achiral separations.
Herein, for the first time we have conducted a systematic study using the improved hydrophobic subtraction model (HSM) which incoporates dipole-dipole interactions to demonstrate the novel selectivity offered by four different macrocyclic glycopeptide based stationary phases, namely NicoShell, TeicoShell, TagShell, and VancoShell. A comparison of the HSM parameters for these columns has been made with 551 commercially available reversed phase stationary phases and the differences in the values point to the importance of adding these columns to the already existing arsenal. These stationary phases offer separations over a wide range of pH and show variability in selectivity depending on the pH of the mobile phase which make them versatile for method development in the reversed phase mode. Additionally, we have provided an actual example of a separation from an Amgen discovery project using the VancoShell column aided by computer-assisted modelling.
This is the first report characterizing macrocyclic glycopeptides for achiral RPLC applications. The selectivity of these stationary phases were found to be unique when compared to other commercially available stationary phases thereby acting as their own class of columns. The unusual selectivity of the columns enabled separation of complex pharmaceutical samples.
对于色谱学家来说,在反相液相色谱中需要具有独特选择性的固定相一直是至关重要的,这有助于推进对复杂样品的分析。基于大环糖肽的固定相已广泛用于手性分离,包括正相、反相和超临界流体色谱等不同的色谱模式。鉴于分析物通过大环糖肽分离的多模式保留机制,如π-π络合相互作用、氢键、偶极-偶极相互作用和强库仑相互作用,这些固定相有望在反相模式下用于非手性分离时提供新的选择性。
本文首次使用改进的疏水扣除模型(HSM)进行了系统研究,该模型纳入了偶极-偶极相互作用,以证明四种不同的基于大环糖肽的固定相(NicoShell、TeicoShell、TagShell 和 VancoShell)提供的新颖选择性。对这些柱子的 HSM 参数与 551 种市售反相固定相进行了比较,这些柱子的数值差异表明,将这些柱子添加到现有的固定相库中非常重要。这些固定相在较宽的 pH 范围内提供分离,并且选择性因流动相 pH 而异,这使它们在反相模式下的方法开发中具有多功能性。此外,我们还提供了一个使用 VancoShell 柱从安进发现项目中分离的实际示例,该示例得到了计算机辅助建模的辅助。
这是首次报道用于非手性 RPLC 应用的大环糖肽。与其他市售固定相相比,这些固定相的选择性独特,因此它们自成一类柱子。这些柱子不寻常的选择性能够分离复杂的药物样品。