Mushtaq Gazala, K Veningston
Department of Computer Science and Engineering, National Institute of Technology Srinagar, Jammu and Kashmir 190006, India.
SLAS Technol. 2024 Dec;29(6):100206. doi: 10.1016/j.slast.2024.100206. Epub 2024 Oct 11.
In this study, a deep learning model is proposed for the classification of fetal health into 3 categories: Normal, suspect, and pathological. The primary objective is to utilize the power of deep learning to improve the efficiency and effectiveness of diagnostic processes. A deep neural network (DNN) model is proposed for fetal health analysis using data obtained from Cardiotocography (CTG). A dataset containing 21 attributes is used to carry out this work. The model incorporates multiple hidden layers, augmented with batch normalization and dropout layers for improved generalization. This study assesses the model's interpretation ability in fetal health classification using explainable deep learning. This enhances transparency in decision-making of the classifier model by leveraging feature importance and feature saliency analysis, fostering trust and facilitating the clinical adoption of fetal health assessments. Our proposed model demonstrates a remarkable performance with 0.99 accuracy, 0.93 sensitivity, 0.93 specificity, 0.96 AUC, 0.93 precision, and 0.93 F1 scores in classifying fetal health. We also performed comparative analysis with six other models including Logistic Regression, KNN, SVM, Naive Bayes, Random Forest, and Gradient Boosting to assess and compare the effectiveness of our model and the accuracies of 0.89, 0.88, 0.90, 081, 0.93, and 0.93 were achieved respectively by these baseline models. The results revealed that our proposed model outperformed all the baseline models in terms of accuracy. This indicates the potential of deep learning in improving fetal health assessment and contributing to the field of obstetrics by providing a robust tool for early risk detection.
在本研究中,提出了一种深度学习模型,用于将胎儿健康状况分为正常、可疑和病理三类。主要目标是利用深度学习的力量来提高诊断过程的效率和有效性。提出了一种深度神经网络(DNN)模型,用于使用从胎心监护(CTG)获得的数据进行胎儿健康分析。使用一个包含21个属性的数据集来开展这项工作。该模型包含多个隐藏层,并通过批量归一化和随机失活层进行增强,以提高泛化能力。本研究使用可解释深度学习评估该模型在胎儿健康分类中的解释能力。通过利用特征重要性和特征显著性分析,这提高了分类器模型决策的透明度,增强了信任并促进了胎儿健康评估在临床上的应用。我们提出的模型在胎儿健康分类中表现出色,准确率为0.99,灵敏度为0.93,特异性为0.93,AUC为0.96,精确率为0.93,F1分数为0.93。我们还与其他六个模型进行了比较分析,包括逻辑回归、K近邻、支持向量机、朴素贝叶斯、随机森林和梯度提升,以评估和比较我们模型的有效性,这些基线模型分别达到了0.89、0.88、0.90、0.81、0.93和0.93的准确率。结果表明,我们提出的模型在准确率方面优于所有基线模型。这表明深度学习在改善胎儿健康评估以及通过提供一个强大的早期风险检测工具为产科领域做出贡献方面具有潜力。