Data Science and Information Engineering, Guizhou Minzu University, Guiyang, 550025, Guizhou, China; Computer Science and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.
Big Data and Information Engineering, Guiyang Institute of Humanities and Technology, Guiyang, 550025, Guizhou, China.
Methods. 2024 Nov;231:215-225. doi: 10.1016/j.ymeth.2024.09.015. Epub 2024 Oct 11.
The high dimensionality and noise challenges in genomic data make it difficult for traditional clustering methods. Existing multi-kernel clustering methods aim to improve the quality of the affinity matrix by learning a set of base kernels, thereby enhancing clustering performance. However, directly learning from the original base kernels presents challenges in handling errors and redundancies when dealing with high-dimensional data, and there is still a lack of feasible multi-kernel fusion strategies. To address these issues, we propose a Multi-Kernel Clustering method with Tensor fusion on Grassmann manifolds, called MKCTM. Specifically, we maximize the clustering consensus among base kernels by imposing tensor low-rank constraints to eliminate noise and redundancy. Unlike traditional kernel fusion approaches, our method fuses learned base kernels on the Grassmann manifold, resulting in a final consensus matrix for clustering. We integrate tensor learning and fusion processes into a unified optimization model and propose an effective iterative optimization algorithm for solving it. Experimental results on ten datasets, comparing against 12 popular baseline clustering methods, confirm the superiority of our approach. Our code is available at https://github.com/foureverfei/MKCTM.git.
基因组数据的高维性和噪声挑战使得传统的聚类方法变得困难。现有的多核聚类方法旨在通过学习一组基础核来提高相似性矩阵的质量,从而提高聚类性能。然而,直接从原始基础核学习在处理高维数据时会遇到错误和冗余的挑战,并且仍然缺乏可行的多核融合策略。为了解决这些问题,我们提出了一种基于 Grassmann 流形上张量融合的多核聚类方法,称为 MKCTM。具体来说,我们通过施加张量低秩约束来最大化基础核之间的聚类一致性,以消除噪声和冗余。与传统的核融合方法不同,我们的方法在 Grassmann 流形上融合了学习到的基础核,从而得到用于聚类的最终一致矩阵。我们将张量学习和融合过程集成到一个统一的优化模型中,并提出了一种有效的迭代优化算法来求解它。在十个数据集上的实验结果,与 12 种流行的基线聚类方法进行比较,验证了我们方法的优越性。我们的代码可在 https://github.com/foureverfei/MKCTM.git 上获得。