Sainte-Justine University Hospital and Research Center, Université de Montréal, Québec, Canada; Laboratory of Cardiovascular Physiology, Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil.
Sainte-Justine University Hospital and Research Center, Université de Montréal, Québec, Canada.
Eur J Pharmacol. 2024 Dec 5;984:177026. doi: 10.1016/j.ejphar.2024.177026. Epub 2024 Oct 11.
Individuals born preterm present altered cardiac autonomic function, a risk factor to heart diseases. Neonatal renin-angiotensin-system activation contributes to adult cardiomyopathy in rats exposed to neonatal hyperoxia, a well-established model of preterm birth-related conditions. Central angiotensin II receptor activation is a key modulator of the autonomic drive to the heart. Whether neonatal hyperoxia leads to alteration of the cardiac autonomic function through activation of the angiotensin II receptor type 1 (AT1) is unknown and was examined in the present study. Sprague-Dawley pups were exposed to hyperoxia or room air from postnatal days 3-10. AT1 antagonist losartan or water was given orally postnatal days 8-10. Blood pressure, autonomic function, left ventricular sympathetic innervation, β-adrenergic-receptors expression, and AT1 expression in the solitary-tract-nucleus were examined in adult rats. Neonatal hyperoxia led to loss of day-night blood pressure variation, decreased heart rate variability, increased sympathovagal balance, increased AT1 expression in the solitary-tract, decreased left ventricle sympathetic innervation, and increased β1-adrenergic-receptor protein expression. Losartan prevented the autonomic changes and AT1 expression in the solitary-tract but did not impact the loss of circadian blood pressure variation nor the changes in sympathetic innervation and in β1-adrenergic-receptor expression. In conclusion, neonatal hyperoxia leads to both central autonomic and cardiac sympathetic changes, partly programmed by neonatal activation of the renin-angiotensin system.
早产儿表现出心脏自主神经功能改变,这是心脏病的一个风险因素。新生儿肾素-血管紧张素系统的激活会导致新生大鼠暴露于高氧环境中发生成年心肌病,这是一种成熟的早产儿相关疾病模型。中枢血管紧张素 II 受体的激活是心脏自主神经驱动的关键调节因子。新生儿高氧是否通过激活血管紧张素 II 受体 1(AT1)导致心脏自主神经功能改变尚不清楚,本研究对此进行了研究。将 Sprague-Dawley 幼鼠从出生后第 3 天到第 10 天暴露于高氧或空气环境中。在出生后第 8-10 天,通过口服给予 AT1 拮抗剂氯沙坦或水。在成年大鼠中检查血压、自主神经功能、左心室交感神经支配、β-肾上腺素能受体表达和孤束核中的 AT1 表达。新生儿高氧导致昼夜血压变化丧失、心率变异性降低、交感迷走神经平衡增加、孤束核中的 AT1 表达增加、左心室交感神经支配减少和β1-肾上腺素能受体蛋白表达增加。氯沙坦可预防自主神经变化和孤束核中的 AT1 表达,但不会影响昼夜血压变化,也不会改变交感神经支配和β1-肾上腺素能受体表达的变化。总之,新生儿高氧会导致中枢自主神经和心脏交感神经的改变,部分是由新生儿肾素-血管紧张素系统的激活所编程。