Schmadel Noah M, Miller Olivia L, Ator Scott W, Miller Matthew P, Schwarz Gregory E, Robertson Dale M, Sekellick Andrew J, Skinner Kenneth D, Saad David A
U.S. Geological Survey, Portland, OR, USA.
U.S. Geological Survey, Salt Lake City, UT, USA.
Sci Total Environ. 2024 Dec 10;955:176816. doi: 10.1016/j.scitotenv.2024.176816. Epub 2024 Oct 11.
Quantifying nutrient sources in streams, their temporal and spatial variability, and drivers of that variability can support effective water resources management. Yet a lack of data and modeling capabilities has previously prevented comprehensive quantification across both space and time. Here a dynamic SPARROW (Spatially Referenced Regressions on Watershed attributes) model that accounts for a lagged delivery of nutrients to streams was developed and applied to simulate seasonal and source-specific total nitrogen (TN) and total phosphorus (TP) loads in streams across the Illinois River basin (IRB). Dynamic load predictions from 2000 through 2020 revealed that a third of the TN and a quarter of the TP instream load originated from non-point sources that were lagged in their delivery from land-application to streams by more than a season. This lagged mass was the largest overall TN source-which was estimated as a lagged expression of previous seasonal non-point sources including fertilizer, manure, atmospheric deposition and fixation, and urban land use. Treated wastewater effluent was the largest TP source exported from the basin, contributing 39 % of the TP load and 15 % of the TN load, and dominated the load in the upper Illinois River near Chicago. Loads in the lower river during this period, conversely, were attributed primarily to a mix of agricultural sources and their lagged fractions from headwater tributaries. Instream processes removed 10 % of the TN load while only 4 % of the TP load was removed during instream transport. With appropriate datasets, the models could be extended to other basins or time periods and used to forecast future seasonal nutrient loads.