Suppr超能文献

医药和非医药干预措施对突尼斯 COVID-19 的影响。

Impact of pharmaceutical and non-pharmaceutical interventions on COVID-19 in Tunisia.

机构信息

Department of Epidemiology and Preventive Medicine, University Hospital Fattouma Bourguiba of Monastir, Monastir, Tunisia.

Department of Community Medicine, Faculty of Medicine, University of Monastir, Monastir, 5000, Tunisia.

出版信息

BMC Public Health. 2024 Oct 14;24(1):2803. doi: 10.1186/s12889-024-19236-9.

Abstract

BACKGROUND

In COVID-19 management, a variety of pharmaceutical interventions (PI) and non- pharmaceutical interventions (NPI) were adopted to limit the spread of the disease and its associated deaths. We aimed to evaluate the impact of PI and NPI on risks of COVID-19 transmission and deaths.

METHOD

We collected aggregate data from March 2nd, 2020, to December 1, 2022 from the Tunisian Ministry of Health's website and OurWorldInData.org site. NPI Periods (NPIP: March 2020 to March 2021) and PI Periods (PIP) were distributed to NPIP1, 2, 3 and 4 and to PIP1, 2, 3 and 4, respectively. We calculated the Relative Risks (RR) and 95% Confidence Intervals (CI) by comparing the subsequent period with previous one.

RESULTS

The risk of SARS-CoV-2 transmission increased progressively from the zero cases period (NPIP2) to the mitigate strategy period (NPIP3) (RR = 14.0; 95% CI: 12.4-15.8) and to the stop-and-go epidemic control period (NPIP4) (RR = 23.1 (95% CI: 22.4-23.9). It was stabilized in the targeted vaccination period (PIP1) (RR = 1.08, 95% CI: 1.07-1.08) and reduced during the mass vaccination period (PIP2) (RR: 0.50, 95% CI: 0.50-0.51). SARS-CoV-2 transmission, increased during PIP3 concomitant with the Omicron wave (RR = 2.65, 95% CI: 2.64-2.67). It remained at a low level in PIP4 (RR = 0.18; 95% CI: 0.18-0.18). Compared to NPIP2, NPIP3 and NPIP4 were associated with a higher risk of COVID-19 mortality (RR = 3.337; 95% CI: 1.797-6.195) and (RR = 72.63 (95% CI: 54.01-97.68), respectively. Since the start of the immunization program, the risk of COVID-19 death has consistently decreased. In comparison to each previous period, the risk transitioned in PIP1 to RR = 0.91; 95% CI: 0.88-0.93, then to RR = 0.85; 95% CI: 0.83-0.88 in PIP2, to RR = 0.47; 95% CI: 0.45-0.50 in PIP3, and to RR = 0.19; 95% CI: 0.18-0.24 during PIP4.

CONCLUSION

In terms of lowering the risk of transmission and mortality, the NP strategy at the beginning of the epidemic outperformed the IP strategy during the outbreak.

摘要

背景

在 COVID-19 管理中,采用了各种药物干预(PI)和非药物干预(NPI)来限制疾病的传播和相关死亡。我们旨在评估 PI 和 NPI 对 COVID-19 传播和死亡风险的影响。

方法

我们从 2020 年 3 月 2 日至 2022 年 12 月 1 日从突尼斯卫生部的网站和 OurWorldInData.org 网站收集汇总数据。NPI 期(NPIP:2020 年 3 月至 2021 年 3 月)和 PI 期(PIP)分别分配给 NPIP1、2、3 和 4 以及 PIP1、2、3 和 4。我们通过比较后续时期与前一时期来计算相对风险(RR)和 95%置信区间(CI)。

结果

从零病例期(NPIP2)到缓解策略期(NPIP3)(RR=14.0;95%CI:12.4-15.8)和到停停走走的疫情控制期(NPIP4)(RR=23.1(95%CI:22.4-23.9),SARS-CoV-2 传播的风险逐渐增加。它在有针对性的疫苗接种期(PIP1)(RR=1.08,95%CI:1.07-1.08)稳定下来,并在大规模疫苗接种期(PIP2)(RR:0.50,95%CI:0.50-0.51)期间减少。在 PIP3 期间,SARS-CoV-2 传播伴随着 Omicron 浪潮而增加(RR=2.65,95%CI:2.64-2.67)。在 PIP4 中,它仍处于低水平(RR=0.18;95%CI:0.18-0.18)。与 NPIP2 相比,NPIP3 和 NPIP4 与 COVID-19 死亡率的风险增加相关(RR=3.337;95%CI:1.797-6.195)和(RR=72.63(95%CI:54.01-97.68))。自免疫计划开始以来,COVID-19 死亡的风险一直在持续下降。与前一时期相比,风险在 PIP1 期转变为 RR=0.91;95%CI:0.88-0.93,然后在 PIP2 期转变为 RR=0.85;95%CI:0.83-0.88,在 PIP3 期转变为 RR=0.47;95%CI:0.45-0.50,在 PIP4 期转变为 RR=0.19;95%CI:0.18-0.24。

结论

就降低传播和死亡率的风险而言,疫情初期的 NP 策略优于疫情爆发期间的 IP 策略。

相似文献

1
Impact of pharmaceutical and non-pharmaceutical interventions on COVID-19 in Tunisia.
BMC Public Health. 2024 Oct 14;24(1):2803. doi: 10.1186/s12889-024-19236-9.
4
Physical interventions to interrupt or reduce the spread of respiratory viruses.
Cochrane Database Syst Rev. 2023 Jan 30;1(1):CD006207. doi: 10.1002/14651858.CD006207.pub6.
5
Physical interventions to interrupt or reduce the spread of respiratory viruses.
Cochrane Database Syst Rev. 2020 Nov 20;11(11):CD006207. doi: 10.1002/14651858.CD006207.pub5.
6
Impact of SARS-CoV-2 vaccines on Covid-19 incidence and mortality in the United States.
PLoS One. 2024 Apr 24;19(4):e0301830. doi: 10.1371/journal.pone.0301830. eCollection 2024.
7
Non-pharmaceutical interventions, vaccination, and the SARS-CoV-2 delta variant in England: a mathematical modelling study.
Lancet. 2021 Nov 13;398(10313):1825-1835. doi: 10.1016/S0140-6736(21)02276-5. Epub 2021 Oct 28.

引用本文的文献

本文引用的文献

2
Severity of the Omicron SARS-CoV-2 variant compared with the previous lineages: A systematic review.
J Cell Mol Med. 2023 Jun;27(11):1443-1464. doi: 10.1111/jcmm.17747. Epub 2023 May 18.
3
Risk factors for severe Covid-19 breakthrough infections: an observational longitudinal study.
BMC Infect Dis. 2022 Nov 28;22(1):894. doi: 10.1186/s12879-022-07859-5.
4
A cross-country comparison of Covid-19 containment measures and their effects on the epidemic curves.
BMC Public Health. 2022 Sep 17;22(1):1765. doi: 10.1186/s12889-022-14088-7.
6
China's 'dynamic zero COVID-19 strategy' will face greater challenges in the future.
J Infect. 2022 Jul;85(1):e13-e14. doi: 10.1016/j.jinf.2022.04.025. Epub 2022 Apr 18.
7
The Effectiveness of Interventions for Increasing COVID-19 Vaccine Uptake: A Systematic Review.
Vaccines (Basel). 2022 Mar 3;10(3):386. doi: 10.3390/vaccines10030386.
9
Effectiveness of non-pharmaceutical public health interventions against COVID-19: A systematic review and meta-analysis.
PLoS One. 2021 Nov 23;16(11):e0260371. doi: 10.1371/journal.pone.0260371. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验