Suppr超能文献

运用基于代理的建模进行开拓性的生物信息学研究:一种创新的方案,可准确预测对化学敏化剂的皮肤或呼吸道过敏反应。

Pioneering bioinformatics with agent-based modelling: an innovative protocol to accurately forecast skin or respiratory allergic reactions to chemical sensitizers.

机构信息

Department of Drug and Health Sciences, University of Catania, V.le A. Doria, 6, 95125 Catania (IT), Italy.

Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 63, 95125 Catania (IT), Italy.

出版信息

Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae506.

Abstract

The assessment of the allergenic potential of chemicals, crucial for ensuring public health safety, faces challenges in accuracy and raises ethical concerns due to reliance on animal testing. This paper presents a novel bioinformatic protocol designed to address the critical challenge of predicting immune responses to chemical sensitizers without the use of animal testing. The core innovation lies in the integration of advanced bioinformatics tools, including the Universal Immune System Simulator (UISS), which models detailed immune system dynamics. By leveraging data from structural predictions and docking simulations, our approach provides a more accurate and ethical method for chemical safety evaluations, especially in distinguishing between skin and respiratory sensitizers. Our approach integrates a comprehensive eight-step process, beginning with the meticulous collection of chemical and protein data from databases like PubChem and the Protein Data Bank. Following data acquisition, structural predictions are performed using cutting-edge tools such as AlphaFold to model proteins whose structures have not been previously elucidated. This structural information is then utilized in subsequent docking simulations, leveraging both ligand-protein and protein-protein interactions to predict how chemical compounds may trigger immune responses. The core novelty of our method lies in the application of UISS-an advanced agent-based modelling system that simulates detailed immune system dynamics. By inputting the results from earlier stages, including docking scores and potential epitope identifications, UISS meticulously forecasts the type and severity of immune responses, distinguishing between Th1-mediated skin and Th2-mediated respiratory allergic reactions. This ability to predict distinct immune pathways is a crucial advance over current methods, which often cannot differentiate between the sensitization mechanisms. To validate the accuracy and robustness of our approach, we applied the protocol to well-known sensitizers: 2,4-dinitrochlorobenzene for skin allergies and trimellitic anhydride for respiratory allergies. The results clearly demonstrate the protocol's ability to differentiate between these distinct immune responses, underscoring its potential for replacing traditional animal-based testing methods. The results not only support the potential of our method to replace animal testing in chemical safety assessments but also highlight its role in enhancing the understanding of chemical-induced immune reactions. Through this innovative integration of computational biology and immunological modelling, our protocol offers a transformative approach to toxicological evaluations, increasing the reliability of safety assessments.

摘要

化学品致敏原潜力评估对保障公众健康安全至关重要,但目前的评估方法在准确性上存在挑战,并且由于依赖动物试验而引发了伦理问题。本文提出了一种新的生物信息学方案,旨在解决一个关键挑战,即在不进行动物试验的情况下预测对化学敏化剂的免疫反应。该方案的核心创新在于整合了先进的生物信息学工具,包括通用免疫系统模拟器(UISS),该模拟器可模拟详细的免疫系统动态。通过利用来自结构预测和对接模拟的数据,我们的方法为化学安全性评估提供了一种更准确和更符合伦理的方法,特别是在区分皮肤和呼吸道致敏剂方面。我们的方法整合了一个全面的八步流程,从精心收集来自 PubChem 和蛋白质数据库等数据库的化学和蛋白质数据开始。在数据采集之后,使用 AlphaFold 等先进工具进行结构预测,以模拟先前未阐明结构的蛋白质。然后,将这些结构信息用于随后的对接模拟,利用配体-蛋白质和蛋白质-蛋白质相互作用来预测化学化合物如何引发免疫反应。我们方法的核心新颖之处在于应用了 UISS——一种先进的基于代理的建模系统,可模拟详细的免疫系统动态。通过输入早期阶段的结果,包括对接评分和潜在表位识别,UISS 可以细致地预测免疫反应的类型和严重程度,区分 Th1 介导的皮肤和 Th2 介导的呼吸道过敏反应。与目前无法区分致敏机制的方法相比,这种预测不同免疫途径的能力是一个重要的进步。为了验证该方案的准确性和稳健性,我们将该方案应用于已知的敏化剂:2,4-二硝基氯苯用于皮肤过敏,均苯三甲酸酐用于呼吸道过敏。结果清楚地表明该方案能够区分这些不同的免疫反应,突出了其替代传统动物试验方法的潜力。这些结果不仅支持该方法在化学品安全性评估中替代动物试验的潜力,还强调了其在增强对化学诱导免疫反应的理解方面的作用。通过计算生物学和免疫建模的创新性整合,该方案为毒理学评估提供了一种变革性的方法,提高了安全性评估的可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e4/11471897/b1ea4b6857ed/bbae506f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验