文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于技术-组织-环境(TOE)框架的埃塞俄比亚卫生部门大健康数据分析准备情况

Readiness of big health data analytics by technology-organization-environment (TOE) framework in Ethiopian health sectors.

作者信息

Assaye Bayou Tilahun, Endalew Bekalu, Tadele Maru Meseret, Hailiye Teferie Gizaw, Teym Abraham, Melese Yidersal Hune, Senishaw Andualem Fentahun, Wubante Sisay Maru, Ngusie Habtamu Setegn, Haimanot Aysheshim Belaineh

机构信息

Department of Health Informatics, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia.

Department of Public Health, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia.

出版信息

Heliyon. 2024 Sep 27;10(19):e38570. doi: 10.1016/j.heliyon.2024.e38570. eCollection 2024 Oct 15.


DOI:10.1016/j.heliyon.2024.e38570
PMID:39397914
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11470786/
Abstract

BACKGROUND: Big health data is a large and complex dataset that the health sector has collected and stored continuously to generate healthcare evidence for intervening the future healthcare uncertainty. However, data use for decision-making practices has been significantly low in developing countries, especially in Ethiopia. Hence, it is critical to ascertain which elements influence the health sector's decision to adopt big health data analytics in health sectors. The aim of this study was to identify the level of readiness for big health data analytics and its associated factors in healthcare sectors. METHODS: A cross-sectional study design was conducted among 845 target employees using the structural equation modeling approach by using technological, organizational, and environmental (TOE) frameworks. The target population of the study was health sector managers, directors, team leaders, healthcare planning officers, ICT/IT managers, and health professionals. For data analysis, exploratory factor analysis using SPSS 20.0 and structural equation modeling using AMOS software were used. RESULT: 58.85 % of the study participants had big health data analytics readiness. Complexity (CX), Top management support (TMS), training (TR) and government law policies and legislation (GLAL) and government IT policies (GITP) had positive direct effect, compatibility (CT), and optimism (OP) had negative direct effect on BD readiness (BDR). CONCLUSION: The technological, organizational, and environmental factors significantly contributed to big health data readiness in the healthcare sector. The Complexity, compatibility, optimism, Top management support, training (TR) and government law and IT policies (GITP) had effect on big health data analytics readiness. Formulating efficient reform in healthcare sectors, especially for evidence-based decision-making and jointly working with stakeholders will be more relevant for effective implementation of big health data analytics in healthcare sectors.

摘要

背景:大健康数据是卫生部门持续收集和存储的一个庞大而复杂的数据集,用于生成医疗证据以应对未来医疗的不确定性。然而,在发展中国家,尤其是在埃塞俄比亚,用于决策实践的数据使用率一直很低。因此,确定哪些因素影响卫生部门在卫生领域采用大健康数据分析的决策至关重要。本研究的目的是确定医疗保健部门对大健康数据分析的准备程度及其相关因素。 方法:采用技术、组织和环境(TOE)框架,通过结构方程建模方法对845名目标员工进行了横断面研究设计。研究的目标人群是卫生部门经理、主任、团队领导、医疗规划官员、信息通信技术/信息技术经理和卫生专业人员。数据分析使用了SPSS 20.0进行探索性因素分析,以及使用AMOS软件进行结构方程建模。 结果:58.85%的研究参与者具备大健康数据分析准备度。复杂性(CX)、高层管理支持(TMS)、培训(TR)、政府法律政策和法规(GLAL)以及政府信息技术政策(GITP)对大健康数据准备度(BDR)有正向直接影响,兼容性(CT)和乐观态度(OP)对BDR有负向直接影响。 结论:技术、组织和环境因素对医疗保健部门的大健康数据准备度有显著贡献。复杂性、兼容性、乐观态度、高层管理支持、培训(TR)以及政府法律和信息技术政策(GITP)对大健康数据分析准备度有影响。在医疗保健部门制定有效的改革措施,特别是基于证据的决策,并与利益相关者共同努力,对于在医疗保健部门有效实施大健康数据分析将更为相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/138b/11470786/04b2870b03ef/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/138b/11470786/b4922924d775/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/138b/11470786/513a37926e0f/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/138b/11470786/89ecdb0a816a/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/138b/11470786/e88e29abb706/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/138b/11470786/73c3cb4ed4b0/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/138b/11470786/04b2870b03ef/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/138b/11470786/b4922924d775/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/138b/11470786/513a37926e0f/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/138b/11470786/89ecdb0a816a/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/138b/11470786/e88e29abb706/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/138b/11470786/73c3cb4ed4b0/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/138b/11470786/04b2870b03ef/gr5.jpg

相似文献

[1]
Readiness of big health data analytics by technology-organization-environment (TOE) framework in Ethiopian health sectors.

Heliyon. 2024-9-27

[2]
How can big data analytics be used for healthcare organization management? Literary framework and future research from a systematic review.

BMC Health Serv Res. 2022-6-22

[3]
RFID application in patient and medical asset operations management: A technology, organizational and environmental (TOE) perspective into key enablers and impediments.

Int J Med Inform. 2018-8-3

[4]
The Impact of Big Data Analytics on Decision-Making Within the Government Sector.

Big Data. 2025-4

[5]
Decision-Making based on Big Data Analytics for People Management in Healthcare Organizations.

J Med Syst. 2019-7-22

[6]
Advancing safety analytics: A diagnostic framework for assessing system readiness within occupational safety and health.

Saf Sci. 2022-2

[7]
How can Big Data Analytics Support People-Centred and Integrated Health Services: A Scoping Review.

Int J Integr Care. 2022-6-16

[8]
Medical doctors profile in Ethiopia: production, attrition and retention. In memory of 100-years Ethiopian modern medicine & the new Ethiopian millennium.

Ethiop Med J. 2008-1

[9]
Concurrence of big data analytics and healthcare: A systematic review.

Int J Med Inform. 2018-3-26

[10]

2023

本文引用的文献

[1]
Designing Electronic Data Capture Systems for Sustainability in Low-Resource Settings: Viewpoint With Lessons Learned From Ethiopia and Myanmar.

JMIR Public Health Surveill. 2024-2-12

[2]
The Impact of Big Data Analytics on Decision-Making Within the Government Sector.

Big Data. 2025-4

[3]
Generate Analysis-Ready Data for Real-world Evidence: Tutorial for Harnessing Electronic Health Records With Advanced Informatic Technologies.

J Med Internet Res. 2023-5-25

[4]
Assessing primary health care readiness for large-scale electronic health record system implementation: Project team perspective.

Health Informatics J. 2023

[5]
Transforming healthcare with big data analytics: technologies, techniques and prospects.

J Med Eng Technol. 2023-1

[6]
An Exploratory Study of the Readiness of Public Healthcare Facilities in Developing Countries to Adopt Health Information Technology (HIT)/e-Health: the Case of Ghana.

J Healthc Inform Res. 2020-1-31

[7]
Healthcare providers' readiness for electronic health record adoption: a cross-sectional study during pre-implementation phase.

BMC Health Serv Res. 2022-3-2

[8]
The use of Big Data Analytics in healthcare.

J Big Data. 2022

[9]
Strengthening the national health information system through a capacity-building and mentorship partnership (CBMP) programme: a health system and university partnership initiative in Ethiopia.

Health Res Policy Syst. 2021-12-9

[10]
Data revolution, health status transformation and the role of artificial intelligence for health and pandemic preparedness in the African context.

BMC Proc. 2021-11-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索