Assaye Bayou Tilahun, Endalew Bekalu, Tadele Maru Meseret, Hailiye Teferie Gizaw, Teym Abraham, Melese Yidersal Hune, Senishaw Andualem Fentahun, Wubante Sisay Maru, Ngusie Habtamu Setegn, Haimanot Aysheshim Belaineh
Department of Health Informatics, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia.
Department of Public Health, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia.
Heliyon. 2024 Sep 27;10(19):e38570. doi: 10.1016/j.heliyon.2024.e38570. eCollection 2024 Oct 15.
BACKGROUND: Big health data is a large and complex dataset that the health sector has collected and stored continuously to generate healthcare evidence for intervening the future healthcare uncertainty. However, data use for decision-making practices has been significantly low in developing countries, especially in Ethiopia. Hence, it is critical to ascertain which elements influence the health sector's decision to adopt big health data analytics in health sectors. The aim of this study was to identify the level of readiness for big health data analytics and its associated factors in healthcare sectors. METHODS: A cross-sectional study design was conducted among 845 target employees using the structural equation modeling approach by using technological, organizational, and environmental (TOE) frameworks. The target population of the study was health sector managers, directors, team leaders, healthcare planning officers, ICT/IT managers, and health professionals. For data analysis, exploratory factor analysis using SPSS 20.0 and structural equation modeling using AMOS software were used. RESULT: 58.85 % of the study participants had big health data analytics readiness. Complexity (CX), Top management support (TMS), training (TR) and government law policies and legislation (GLAL) and government IT policies (GITP) had positive direct effect, compatibility (CT), and optimism (OP) had negative direct effect on BD readiness (BDR). CONCLUSION: The technological, organizational, and environmental factors significantly contributed to big health data readiness in the healthcare sector. The Complexity, compatibility, optimism, Top management support, training (TR) and government law and IT policies (GITP) had effect on big health data analytics readiness. Formulating efficient reform in healthcare sectors, especially for evidence-based decision-making and jointly working with stakeholders will be more relevant for effective implementation of big health data analytics in healthcare sectors.
背景:大健康数据是卫生部门持续收集和存储的一个庞大而复杂的数据集,用于生成医疗证据以应对未来医疗的不确定性。然而,在发展中国家,尤其是在埃塞俄比亚,用于决策实践的数据使用率一直很低。因此,确定哪些因素影响卫生部门在卫生领域采用大健康数据分析的决策至关重要。本研究的目的是确定医疗保健部门对大健康数据分析的准备程度及其相关因素。 方法:采用技术、组织和环境(TOE)框架,通过结构方程建模方法对845名目标员工进行了横断面研究设计。研究的目标人群是卫生部门经理、主任、团队领导、医疗规划官员、信息通信技术/信息技术经理和卫生专业人员。数据分析使用了SPSS 20.0进行探索性因素分析,以及使用AMOS软件进行结构方程建模。 结果:58.85%的研究参与者具备大健康数据分析准备度。复杂性(CX)、高层管理支持(TMS)、培训(TR)、政府法律政策和法规(GLAL)以及政府信息技术政策(GITP)对大健康数据准备度(BDR)有正向直接影响,兼容性(CT)和乐观态度(OP)对BDR有负向直接影响。 结论:技术、组织和环境因素对医疗保健部门的大健康数据准备度有显著贡献。复杂性、兼容性、乐观态度、高层管理支持、培训(TR)以及政府法律和信息技术政策(GITP)对大健康数据分析准备度有影响。在医疗保健部门制定有效的改革措施,特别是基于证据的决策,并与利益相关者共同努力,对于在医疗保健部门有效实施大健康数据分析将更为相关。
Int J Integr Care. 2022-6-16
Int J Med Inform. 2018-3-26
JMIR Public Health Surveill. 2024-2-12
J Med Eng Technol. 2023-1
J Big Data. 2022