Suppr超能文献

Mask R-CNN在无人机遥感影像建筑物检测中的应用。

Application of mask R-CNN for building detection in UAV remote sensing images.

作者信息

Hou Tao, Li Jing

机构信息

Wuhan University of Science and Technology, Wuhan, Hubei, 430000, China.

出版信息

Heliyon. 2024 Sep 19;10(19):e38141. doi: 10.1016/j.heliyon.2024.e38141. eCollection 2024 Oct 15.

Abstract

This study aims to tackle the challenges of low accuracy in building feature extraction and insufficient details in three-dimensional (3D) modeling faced by traditional methods, particularly in complex backgrounds. To address these issues, a method for building feature extraction based on Mask Region-Convolutional Neural Network (Mask R-CNN) is proposed. This approach combines deep learning techniques with aerial images to ensure precise and efficient automatic detection and feature extraction. Urban building images are captured through aerial photography, and building outlines are annotated to create a comprehensive dataset of building features. The Mask R-CNN-based method efficiently processes and classifies the features of the dataset, generating candidate regions for further analysis. Additionally, this method demonstrates significant advantages in building feature extraction by employing the Mask R-CNN model to generate adaptive features. Comparative analysis with models such as Convolutional Neural Network (CNN), Region-based Convolutional Neural Network (R-CNN), Fast Region-based Convolutional Neural Network (Fast R-CNN), Faster Region-based Convolutional Neural Network (Faster R-CNN), and Generative Adversarial Network (GAN) indicates that Mask R-CNN exhibits superior performance in building feature extraction. The Mask R-CNN-based approach achieved approximately 95 % classification accuracy, while also showcasing strong stability and generalization capabilities. This study provides new methodologies and insights for enhancing feature extraction in aerial building imagery, offering significant reference value for the fields of architectural design and urban planning.

摘要

本研究旨在应对传统方法在建筑物特征提取精度低以及三维(3D)建模细节不足方面所面临的挑战,尤其是在复杂背景下。为解决这些问题,提出了一种基于掩码区域卷积神经网络(Mask R-CNN)的建筑物特征提取方法。该方法将深度学习技术与航空影像相结合,以确保精确且高效的自动检测和特征提取。通过航空摄影获取城市建筑物图像,并对建筑物轮廓进行标注,以创建一个全面的建筑物特征数据集。基于Mask R-CNN的方法有效地处理和分类数据集的特征,生成候选区域以供进一步分析。此外,该方法通过使用Mask R-CNN模型生成自适应特征,在建筑物特征提取方面展现出显著优势。与卷积神经网络(CNN)、基于区域的卷积神经网络(R-CNN)、快速基于区域的卷积神经网络(Fast R-CNN)、更快基于区域的卷积神经网络(Faster R-CNN)和生成对抗网络(GAN)等模型的对比分析表明,Mask R-CNN在建筑物特征提取方面表现出卓越性能。基于Mask R-CNN的方法实现了约95%的分类准确率,同时还展现出强大的稳定性和泛化能力。本研究为增强航空建筑图像中的特征提取提供了新的方法和见解,为建筑设计和城市规划领域提供了重要的参考价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/245c/11467628/73b4f03330ee/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验