Suppr超能文献

用于准确预测乳腺癌复发的计算病理学:基于深度学习工具的开发与验证

Computational Pathology for Accurate Prediction of Breast Cancer Recurrence: Development and Validation of a Deep Learning-based Tool.

作者信息

Su Ziyu, Guo Yongxin, Wesolowski Robert, Tozbikian Gary, O'Connell Nathaniel S, Niazi M Khalid Khan, Gurcan Metin N

出版信息

ArXiv. 2024 Sep 23:arXiv:2409.15491v1.

Abstract

Accurate recurrence risk stratification is crucial for optimizing treatment plans for breast cancer patients. Current prognostic tools like Oncotype DX (ODX) offer valuable genomic insights for HR+/HER2- patients but are limited by cost and accessibility, particularly in underserved populations. In this study, we present Deep-BCR-Auto, a deep learning-based computational pathology approach that predicts breast cancer recurrence risk from routine H&E-stained whole slide images (WSIs). Our methodology was validated on two independent cohorts: the TCGA-BRCA dataset and an in-house dataset from The Ohio State University (OSU). Deep-BCR-Auto demonstrated robust performance in stratifying patients into low- and high-recurrence risk categories. On the TCGA-BRCA dataset, the model achieved an area under the receiver operating characteristic curve (AUROC) of 0.827, significantly outperforming existing weakly supervised models (p=0.041). In the independent OSU dataset, Deep-BCR-Auto maintained strong generalizability, achieving an AUROC of 0.832, along with 82.0% accuracy, 85.0% specificity, and 67.7% sensitivity. These findings highlight the potential of computational pathology as a cost-effective alternative for recurrence risk assessment, broadening access to personalized treatment strategies. This study underscores the clinical utility of integrating deep learning-based computational pathology into routine pathological assessment for breast cancer prognosis across diverse clinical settings.

摘要

准确的复发风险分层对于优化乳腺癌患者的治疗方案至关重要。目前的预后工具,如Oncotype DX(ODX),为HR+/HER2-患者提供了有价值的基因组见解,但受到成本和可及性的限制,特别是在服务不足的人群中。在本研究中,我们提出了Deep-BCR-Auto,一种基于深度学习的计算病理学方法,可从常规苏木精和伊红染色的全切片图像(WSIs)预测乳腺癌复发风险。我们的方法在两个独立队列上得到了验证:TCGA-BRCA数据集和俄亥俄州立大学(OSU)的内部数据集。Deep-BCR-Auto在将患者分为低复发风险和高复发风险类别方面表现出强大的性能。在TCGA-BRCA数据集上,该模型的受试者操作特征曲线下面积(AUROC)达到0.827,显著优于现有的弱监督模型(p=0.041)。在独立的OSU数据集中,Deep-BCR-Auto保持了强大的通用性,AUROC为0.832,准确率为82.0%,特异性为85.0%,敏感性为67.7%。这些发现凸显了计算病理学作为复发风险评估的一种经济有效的替代方法的潜力,拓宽了个性化治疗策略的可及性。本研究强调了将基于深度学习的计算病理学整合到常规病理评估中以用于不同临床环境下乳腺癌预后的临床实用性。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验