Ahmad Kaisar, Dabbawala Aasif Asharafbhai, Polychronopoulou Kyriaki, Anjum Dalaver, Gacesa Marko, Abi Jaoude Maguy
Center for Catalysis and Separation Department of Chemistry Khalifa University of Science and Technology PO Box 127788 Abu Dhabi UAE.
Center for Catalysis and Separation Department of Mechanical and Nuclear Engineering Khalifa University of Science and Technology PO Box 127788 Abu Dhabi UAE.
Glob Chall. 2024 Sep 20;8(10):2400159. doi: 10.1002/gch2.202400159. eCollection 2024 Oct.
This study presents a single-site microkinetic model for methanol synthesis by CO hydrogenation over intermetallic PdGa/SiO. A reaction path analysis (RPA) combining theoretical results and realistic catalyst surface reaction data is established to elucidate the reaction mechanism and kinetic models of CO hydrogenation to methanol and CO. The RPA leads to the derivation of rate expressions for both reactions without presumptions about the most abundant reactive intermediate (MARI) and rate-determining step (rds). The formation of HCOOH* is found to be the rds (step 19) for methanol synthesis via the formate pathway, with CO and H-atoms adsorbed on intermetallic sites as the MARIs. The derived kinetic model is corroborated with experimental data acquired under different reaction conditions, using a lab-scale fixed-bed reactor and PdGa/SiO nanoparticles prepared by incipient wetness impregnation. The excellent agreement between the experimental data and the kinetic model ( = 0.99) substantiates the proposed mechanism with an activation energy of 61.52 kJ mol for methanol synthesis. The reported catalyst exhibits high selectivity to methanol (96%) at 1 bar, 150 °C, and H/CO ratio of 3:1. These findings provide critical insights to optimize catalysts and processes targeting CO hydrogenation at atmospheric pressure and low temperatures for on-demand energy production.
本研究提出了一种用于金属间化合物PdGa/SiO上CO加氢合成甲醇的单中心微动力学模型。建立了一种结合理论结果和实际催化剂表面反应数据的反应路径分析(RPA)方法,以阐明CO加氢生成甲醇和CO的反应机理及动力学模型。RPA在无需假定最丰富的反应中间体(MARI)和速率决定步骤(rds)的情况下,推导出了两个反应的速率表达式。发现通过甲酸途径合成甲醇时,HCOOH*的形成是rds(步骤19),CO和H原子吸附在金属间位点上作为MARI。使用实验室规模的固定床反应器和初湿浸渍法制备的PdGa/SiO纳米颗粒,在不同反应条件下获取的实验数据对所推导的动力学模型进行了验证。实验数据与动力学模型之间的出色吻合度(R = 0.99)证实了所提出的机理,甲醇合成的活化能为61.52 kJ mol。所报道的催化剂在1 bar、150°C和H/CO比为3:1的条件下对甲醇表现出高选择性(96%)。这些发现为优化催化剂和工艺提供了关键见解,目标是在常压和低温下进行CO加氢以按需生产能源。