Suppr超能文献

钯促进氧化铟用于CO加氢制甲醇的原子尺度工程。

Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO hydrogenation.

作者信息

Frei Matthias S, Mondelli Cecilia, García-Muelas Rodrigo, Kley Klara S, Puértolas Begoña, López Núria, Safonova Olga V, Stewart Joseph A, Curulla Ferré Daniel, Pérez-Ramírez Javier

机构信息

Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.

Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.

出版信息

Nat Commun. 2019 Jul 29;10(1):3377. doi: 10.1038/s41467-019-11349-9.

Abstract

Metal promotion is broadly applied to enhance the performance of heterogeneous catalysts to fulfill industrial requirements. Still, generating and quantifying the effect of the promoter speciation that exclusively introduces desired properties and ensures proximity to or accommodation within the active site and durability upon reaction is very challenging. Recently, InO was discovered as a highly selective and stable catalyst for green methanol production from CO. Activity boosting by promotion with palladium, an efficient H-splitter, was partially successful since palladium nanoparticles mediate the parasitic reverse water-gas shift reaction, reducing selectivity, and sinter or alloy with indium, limiting metal utilization and robustness. Here, we show that the precise palladium atoms architecture reached by controlled co-precipitation eliminates these limitations. Palladium atoms replacing indium atoms in the active InO ensemble attract additional palladium atoms deposited onto the surface forming low-nuclearity clusters, which foster H activation and remain unaltered, enabling record productivities for 500 h.

摘要

金属促进作用被广泛应用于提高多相催化剂的性能以满足工业需求。然而,生成并量化仅引入所需性质的促进剂形态的效果,并确保其靠近活性位点或能容纳于活性位点内以及反应时的耐久性,是极具挑战性的。最近,氧化铟被发现是一种用于由一氧化碳绿色生产甲醇的高选择性且稳定的催化剂。用高效氢分裂剂钯进行促进以提高活性取得了部分成功,因为钯纳米颗粒介导了寄生的逆水煤气变换反应,降低了选择性,并且与铟烧结或形成合金,限制了金属利用率和稳定性。在此,我们表明通过可控共沉淀实现的精确钯原子结构消除了这些限制。在活性氧化铟簇中取代铟原子的钯原子吸引沉积在表面的额外钯原子形成低核簇,这促进了氢的活化且保持不变,从而实现了500小时的创纪录生产率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ceab/6662860/4e2638b2eeb3/41467_2019_11349_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验