Suppr超能文献

钯促进氧化铟用于CO加氢制甲醇的原子尺度工程。

Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO hydrogenation.

作者信息

Frei Matthias S, Mondelli Cecilia, García-Muelas Rodrigo, Kley Klara S, Puértolas Begoña, López Núria, Safonova Olga V, Stewart Joseph A, Curulla Ferré Daniel, Pérez-Ramírez Javier

机构信息

Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.

Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.

出版信息

Nat Commun. 2019 Jul 29;10(1):3377. doi: 10.1038/s41467-019-11349-9.

Abstract

Metal promotion is broadly applied to enhance the performance of heterogeneous catalysts to fulfill industrial requirements. Still, generating and quantifying the effect of the promoter speciation that exclusively introduces desired properties and ensures proximity to or accommodation within the active site and durability upon reaction is very challenging. Recently, InO was discovered as a highly selective and stable catalyst for green methanol production from CO. Activity boosting by promotion with palladium, an efficient H-splitter, was partially successful since palladium nanoparticles mediate the parasitic reverse water-gas shift reaction, reducing selectivity, and sinter or alloy with indium, limiting metal utilization and robustness. Here, we show that the precise palladium atoms architecture reached by controlled co-precipitation eliminates these limitations. Palladium atoms replacing indium atoms in the active InO ensemble attract additional palladium atoms deposited onto the surface forming low-nuclearity clusters, which foster H activation and remain unaltered, enabling record productivities for 500 h.

摘要

金属促进作用被广泛应用于提高多相催化剂的性能以满足工业需求。然而,生成并量化仅引入所需性质的促进剂形态的效果,并确保其靠近活性位点或能容纳于活性位点内以及反应时的耐久性,是极具挑战性的。最近,氧化铟被发现是一种用于由一氧化碳绿色生产甲醇的高选择性且稳定的催化剂。用高效氢分裂剂钯进行促进以提高活性取得了部分成功,因为钯纳米颗粒介导了寄生的逆水煤气变换反应,降低了选择性,并且与铟烧结或形成合金,限制了金属利用率和稳定性。在此,我们表明通过可控共沉淀实现的精确钯原子结构消除了这些限制。在活性氧化铟簇中取代铟原子的钯原子吸引沉积在表面的额外钯原子形成低核簇,这促进了氢的活化且保持不变,从而实现了500小时的创纪录生产率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ceab/6662860/4e2638b2eeb3/41467_2019_11349_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验