Suppr超能文献

高度支化的 Au 超粒子作为高效光热换能器用于光神经调节。

Highly Branched Au Superparticles as Efficient Photothermal Transducers for Optical Neuromodulation.

机构信息

Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China.

School of Life Sciences, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.

出版信息

ACS Nano. 2024 Oct 29;18(43):29572-29584. doi: 10.1021/acsnano.4c07163. Epub 2024 Oct 14.

Abstract

Precise neuromodulation is critical for interrogating cellular communication and treating neurological diseases. Nanoscale transducers have emerged as effective interfaces to exert photothermal effects and modulate neural activities with a high spatiotemporal resolution. Ideal materials for this application should possess strong light absorption, high photothermal conversion efficiency, and great biocompatibility for clinical translation. Here, we show that the structurally designed 3D Au superparticles with a highly branched morphology can be promising candidates for nongenetic and remote neuromodulation. The structure-induced blackbody-like absorption endows Au superparticles with photothermal conversion efficiency over 90%, much higher than that of conventional Au nanorods. With the biocompatible polydopamine ligands, Au superparticles can be readily interfaced with primary mouse hippocampal neurons and other cells and can photostimulate or inhibit their activities in both cell networks or with a single-cell resolution. These findings highlight the importance of structural designs as powerful tools to promote the performance of plasmonic materials in neuromodulation and related research of neuroscience and neuroengineering.

摘要

精确的神经调节对于研究细胞通讯和治疗神经疾病至关重要。纳米级换能器已成为一种有效的界面,可以发挥光热效应,并以高时空分辨率调节神经活动。这种应用的理想材料应具有强吸收、高光热转换效率和良好的生物相容性,以实现临床转化。在这里,我们展示了具有高度分支形态的结构设计的 3D Au 超粒子,它是一种有前途的非遗传和远程神经调节候选材料。结构诱导的黑体样吸收赋予 Au 超粒子超过 90%的光热转换效率,远高于传统的 Au 纳米棒。利用生物相容性的聚多巴胺配体,Au 超粒子可以很容易地与原代小鼠海马神经元和其他细胞结合,并以细胞网络或单细胞分辨率对其活动进行光刺激或抑制。这些发现强调了结构设计作为一种强大工具的重要性,它可以促进等离子体材料在神经调节以及神经科学和神经工程相关研究中的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验