Wang Xiyang, Li Zhen, Li Xinbo, Gao Chuan, Pu Yinghui, Zhong Xia, Qian Jingyu, Zeng Minli, Chu Xuefeng, Chen Zuolong, Redshaw Carl, Zhou Hua, Sun Chengjun, Regier Tom, King Graham, Dynes James J, Zhang Bingsen, Zhu Yanqiu, Li Guangshe, Peng Yue, Wang Nannan, Wu Yimin A
School of Environment, Tsinghua University, Beijing, 100084, P. R. China.
Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
Adv Mater. 2024 Dec;36(49):e2412570. doi: 10.1002/adma.202412570. Epub 2024 Oct 14.
Cu nanoparticles (NPs) have attracted widespread attention in electronics, energy, and catalysis. However, conventionally synthesized Cu NPs face some challenges such as surface passivation and agglomeration in applications, which impairs their functionalities in the physicochemical properties. Here, the issues above by engineering an embedded interface of stably bare Cu NPs on the cation-vacancy CuWO support is addressed, which induces the strong metal-support interactions and reverse electron transfer. Various atomic-scale analyses directly demonstrate the unique electronic structure of the embedded Cu NPs with negative charge and anion oxygen protective layer, which mitigates the typical degradation pathways such as oxidation in ambient air, high-temperature agglomeration, and CO poisoning adsorption. Kinetics and in situ spectroscopic studies unveil that the embedded electron-enriched Cu NPs follow the typical Eley-Rideal mechanism in CO oxidation, contrasting the Langmuir-Hinshelwood mechanism on the traditional Cu NPs. This mechanistic shift is driven by the Coulombic repulsion in anion oxygen layer, enabling its direct reaction with gaseous CO to form the easily desorbed monodentate carbonate.
铜纳米颗粒(NPs)在电子、能源和催化领域引起了广泛关注。然而,传统合成的铜纳米颗粒在应用中面临一些挑战,如表面钝化和团聚,这损害了它们在物理化学性质方面的功能。在此,通过在阳离子空位CuWO载体上设计稳定裸露的铜纳米颗粒的嵌入界面,解决了上述问题,这引发了强金属-载体相互作用和反向电子转移。各种原子尺度分析直接证明了具有负电荷和阴离子氧保护层的嵌入铜纳米颗粒的独特电子结构,这减轻了典型的降解途径,如在环境空气中的氧化、高温团聚和一氧化碳中毒吸附。动力学和原位光谱研究表明,嵌入的富电子铜纳米颗粒在一氧化碳氧化中遵循典型的埃利-里德机理,这与传统铜纳米颗粒上的朗缪尔-欣谢尔伍德机理形成对比。这种机理转变是由阴离子氧层中的库仑排斥力驱动的,使其能够与气态一氧化碳直接反应形成易于解吸的单齿碳酸盐。