Li Na, Zhao Enyue, Zhang Zhigang, Yin Wen, He Lunhua, Wang Baotian, Wang Fangwei, Xiao Xiaoling, Zhao Jinkui
Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
Adv Mater. 2024 Nov;36(48):e2408984. doi: 10.1002/adma.202408984. Epub 2024 Oct 14.
Anionic redox chemistry presents a promising approach to enhancing the energy density of oxide cathode materials. However, anionic redox reactions invariably lead to O formation, either as free gaseous O or trapped molecular O, which destabilizes the material's structure. Here, this critical challenge is addressed by constructing a crystal structure with both gradient redox activity and de-clustered redox-active oxygen. This design strategy is directly validated by operando differential electrochemical mass spectrometry and ex situ 50 K electron paramagnetic resonance, revealing no release of O or trapped O in the 4.5 V P2-type sodium manganese-based layered oxide. Notably, the material exhibits a highly reversible capacity of 247 mA h g at 20 mA g and exceptional capacity retention of 91.4% after 300 cycles at 300 mA g. In situ X-ray diffraction further suggests that the absence of O formation suppresses the typical P2-O2 phase transition, resulting in a minimal lattice volume change of only 0.5%. Ex situ neutron diffraction studies and theoretical calculations further elucidate that the locally ordered lattice is well-preserved, attributable to reduced cationic migrations during cycling.
阴离子氧化还原化学为提高氧化物阴极材料的能量密度提供了一种很有前景的方法。然而,阴离子氧化还原反应总是会导致氧的形成,要么是自由气态氧,要么是捕获的分子氧,这会破坏材料的结构。在此,通过构建具有梯度氧化还原活性和去簇化氧化还原活性氧的晶体结构来应对这一关键挑战。这种设计策略通过原位差分电化学质谱和非原位50K电子顺磁共振直接得到验证,结果表明在4.5V的P2型钠锰基层状氧化物中没有氧的释放或捕获氧。值得注意的是,该材料在20mA g时表现出247 mA h g的高度可逆容量,在300 mA g下循环300次后容量保持率高达91.4%。原位X射线衍射进一步表明,氧的不形成抑制了典型的P2-O2相变,导致晶格体积变化最小,仅为0.5%。非原位中子衍射研究和理论计算进一步阐明,局部有序晶格得到了很好的保留,这归因于循环过程中阳离子迁移的减少。