Department of Neurology, University of New Mexico, Albuquerque, NM, USA.
Lovelace Biomedical Research Institute, Albuquerque, NM, USA.
Adv Exp Med Biol. 2024;1463:21-26. doi: 10.1007/978-3-031-67458-7_4.
In the 50 years of my membership in ISOTT, I, Edwin M Nemoto, have enjoyed the application of many of the technologies developed in our society including microelectrodes for pH, PO, and near-infrared spectroscopy (NIRS) in the measurement of tissue oxygenation and metabolism. The greatest joy has been the number of great scientists I have had the pleasure of knowing and exchanging scientific ideas with across the United States, Europe, and Asia. This will be the enduring legacy of ISOTT for me personally as we continue beyond our half-century existence.Every organ in our body, including the tegmentum, is endowed with microvascular shunts (MVS), which may be involved in physiological regulation, i.e. temperature regulation or pathophysiological responses to tissue injury and oedema. MVS that open in response to increased capillary resistance and tissue oedema in the brain, heart, kidneys, liver, and muscles conduct neither nutrient nor gas exchange with tissue promoting tissue oedema in a vicious cycle. Pharmacologic arteriolar vasodilation cannot correct the MVS flow as may occur after a stroke or traumatic brain injury because pan arteriolar vasodilation would shunt flow to the normal tissue and away from the injured brain in a "reverse" steal or a "Robin Hood" phenomenon. A high molecular weight (4000 kDa) drag-reducing polymer (DRP) of polyethylene oxide or Lamiflo enhances blood flow by altering the physical dynamics of red blood cells (RBC) and blood flow, increasing the shear rate in the microvasculature and capillaries where shear rate is highest as it is inversely proportional to the 3rd power of blood vessel diameter. The shear rate sensed on the endothelium through the glycocalyx exerts precise control of endothelial function, including endothelial water permeability, nitric oxide synthase activity, lymphocyte adhesion to and transport across the endothelium, and microglial activation, all in response to low endothelial shear rate. DRP has proven effective in reversing MVS flow and increasing capillary flow in haemorrhagic shock, myocardial ischaemia, stroke, renal ischaemia, traumatic brain injury, stroke, sepsis, and Alzheimer's Disease. Our aim is to establish the universality of MVS in the pathogenesis of vascular disease and in taking DRP to clinical treatment of vascular diseases.
在我作为 ISOTT 成员的 50 年里,我有幸应用了我们社会发展的许多技术,包括用于测量组织氧合和代谢的微电极、pH、PO 和近红外光谱 (NIRS)。最大的乐趣是我有幸结识了许多伟大的科学家,并与他们交流了科学思想,这些科学家来自美国、欧洲和亚洲各地。这将是 ISOTT 给我个人留下的持久遗产,因为我们将超越半个世纪的存在而继续发展。
我们身体的每个器官,包括脑桥,都具有微血管分流 (MVS),它可能参与生理调节,即温度调节或对组织损伤和水肿的病理生理反应。MVS 在大脑、心脏、肾脏、肝脏和肌肉中的毛细血管阻力增加和组织水肿时开放,既不进行营养交换,也不进行气体交换,促进组织水肿形成恶性循环。药物引起的小动脉扩张不能纠正 MVS 血流,因为中风或创伤性脑损伤后可能会发生全动脉扩张,导致血流分流到正常组织,远离受伤的大脑,出现“反向”盗血或“罗宾汉”现象。一种高分子量 (4000 kDa) 的聚氧化乙烯或 Lamiflo 减阻聚合物 (DRP) 通过改变红细胞 (RBC) 和血流的物理动力学,增加微血管和毛细血管中的剪切率,从而增加血流,剪切率在微脉管系统中最高,因为它与血管直径的立方成反比。通过糖萼在内皮细胞上感受到的剪切率,精确控制内皮功能,包括内皮水通透性、一氧化氮合酶活性、淋巴细胞在内皮上的黏附和运输,以及小胶质细胞的激活,所有这些都响应于低内皮剪切率。DRP 已被证明可有效逆转出血性休克、心肌缺血、中风、肾缺血、创伤性脑损伤、中风、败血症和阿尔茨海默病中的 MVS 血流和增加毛细血管血流。我们的目标是确立 MVS 在血管疾病发病机制中的普遍性,并将 DRP 用于血管疾病的临床治疗。