Suppr超能文献

加拿大病毒测序数据门户和多唐:用于 SARS-CoV-2 病毒序列和基因组流行病学的开放资源。

The Canadian VirusSeq Data Portal and Duotang: open resources for SARS-CoV-2 viral sequences and genomic epidemiology.

机构信息

Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.

Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.

出版信息

Microb Genom. 2024 Oct;10(10). doi: 10.1099/mgen.0.001293.

Abstract

The COVID-19 pandemic led to a large global effort to sequence SARS-CoV-2 genomes from patient samples to track viral evolution and inform the public health response. Millions of SARS-CoV-2 genome sequences have been deposited in global public repositories. The Canadian COVID-19 Genomics Network (CanCOGeN - VirusSeq), a consortium tasked with coordinating expanded sequencing of SARS-CoV-2 genomes across Canada early in the pandemic, created the Canadian VirusSeq Data Portal, with associated data pipelines and procedures, to support these efforts. The goal of VirusSeq was to allow open access to Canadian SARS-CoV-2 genomic sequences and enhanced, standardized contextual data that were unavailable in other repositories and that meet FAIR standards (Findable, Accessible, Interoperable and Reusable). In addition, the portal data submission pipeline contains data quality checking procedures and appropriate acknowledgement of data generators that encourages collaboration. From inception to execution, the portal was developed with a conscientious focus on strong data governance principles and practices. Extensive efforts ensured a commitment to Canadian privacy laws, data security standards, and organizational processes. This portal has been coupled with other resources, such as Viral AI, and was further leveraged by the Coronavirus Variants Rapid Response Network (CoVaRR-Net) to produce a suite of continually updated analytical tools and notebooks. Here we highlight this portal (https://virusseq-dataportal.ca/), including its contextual data not available elsewhere, and the Duotang (https://covarr-net.github.io/duotang/duotang.html), a web platform that presents key genomic epidemiology and modelling analyses on circulating and emerging SARS-CoV-2 variants in Canada. Duotang presents dynamic changes in variant composition of SARS-CoV-2 in Canada and by province, estimates variant growth, and displays complementary interactive visualizations, with a text overview of the current situation. The VirusSeq Data Portal and Duotang resources, alongside additional analyses and resources computed from the portal (COVID-MVP, CoVizu), are all open source and freely available. Together, they provide an updated picture of SARS-CoV-2 evolution to spur scientific discussions, inform public discourse, and support communication with and within public health authorities. They also serve as a framework for other jurisdictions interested in open, collaborative sequence data sharing and analyses.

摘要

新冠疫情大流行促使全球各国投入大量资源,从患者样本中对 SARS-CoV-2 基因组进行测序,以追踪病毒进化并为公共卫生应对措施提供信息。数以百万计的 SARS-CoV-2 基因组序列已被存入全球公共存储库中。加拿大 COVID-19 基因组学网络(CanCOGeN - VirusSeq)是一个在疫情早期负责协调加拿大扩大 SARS-CoV-2 基因组测序工作的联盟,创建了加拿大病毒测序数据门户(Canadian VirusSeq Data Portal),其中包含相关的数据管道和程序,以支持这些工作。VirusSeq 的目标是允许公开访问加拿大 SARS-CoV-2 基因组序列和增强型、标准化的上下文数据,这些数据在其他存储库中不可用,但符合 FAIR 标准(可查找、可访问、可互操作和可重复使用)。此外,门户数据提交管道包含数据质量检查程序,并适当承认数据生成者,以鼓励合作。从构思到执行,该门户的开发都有意识地关注强有力的数据治理原则和实践。经过广泛努力,确保了对加拿大隐私法、数据安全标准和组织流程的承诺。该门户与其他资源(如 Viral AI)相结合,并进一步被冠状病毒变体快速反应网络(CoVaRR-Net)利用,以提供一系列不断更新的分析工具和笔记本。在此,我们重点介绍这个门户(https://virusseq-dataportal.ca/),包括其在其他地方不可用的上下文数据,以及 Duotang(https://covarr-net.github.io/duotang/duotang.html),这是一个网络平台,用于展示加拿大循环和新兴 SARS-CoV-2 变体的关键基因组流行病学和建模分析。Duotang 展示了加拿大 SARS-CoV-2 变体组成的动态变化,按省份进行估计,显示变体增长率,并显示互补的交互式可视化,以及当前情况的文本概述。VirusSeq 数据门户和 Duotang 资源,以及从门户计算的其他分析和资源(COVID-MVP、CoVizu),均为开源且免费提供。它们共同提供了 SARS-CoV-2 进化的最新情况,以激发科学讨论、为公众话语提供信息,并支持与公共卫生当局的沟通。它们还为其他有兴趣进行开放、协作的序列数据共享和分析的司法管辖区提供了一个框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8a2/11472881/86b3440a2973/mgen-10-01293-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验