Department of Wood and Paper Sciences and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran; Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland.
Department of Wood and Paper Sciences and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
Int J Biol Macromol. 2024 Nov;281(Pt 3):136561. doi: 10.1016/j.ijbiomac.2024.136561. Epub 2024 Oct 12.
This research introduces a novel upcycling method for transforming cigarette filters-an abundant and persistent environmental waste-into high-performance epoxy composites reinforced with cellulose nanofibers. The innovation lies in extracting cellulose acetate nanofibers from used cigarette butts via a multi-step purification and electrospinning process, followed by their conversion into regenerated cellulose nanofibers through alkaline hydrolysis. This dual-fiber approach allows us to fabricate four distinct epoxy composites, each reinforced by different nanofiber types: recycled cellulose acetate nanofibers, regenerated cellulose nanofibers from recycled cigarette filters, and their commercial counterparts. Notably, this is the first time regenerated nanofibers derived from waste cigarette filters have been utilized for epoxy composite reinforcement, demonstrating a sustainable, high-value use for a major pollutant. Comprehensive characterizations, including FTIR, XRD, SEM, and contact angle measurements, confirmed the successful regeneration of cellulose nanofibers, showing improved hydrophilicity, reduced crystallinity, and uniform nanofiber morphology with diameters between 200 and 300 nm. The innovation further extends to the mechanical performance of these composites: tensile tests revealed that those reinforced with regenerated cellulose nanofibers exhibited superior tensile strength (49.5-53.8 MPa), significantly outperforming both cellulose acetate nanofiber composites (40.1-42.6 MPa) and neat epoxy resin (31.4 MPa). This marked improvement is attributed to enhanced nanofiber dispersion and interfacial adhesion within the epoxy matrix, an essential advancement over traditional composites. In addition, thermal analysis showed that all composites maintained thermal stability in the 300-400 °C range, comparable to commercial alternatives. The regenerated nanofiber-reinforced composites also displayed enhanced optical transparency due to reduced light scattering, making them ideal candidates for applications requiring both mechanical strength and optical clarity. By pioneering the use of cigarette filter waste for fabricating advanced cellulose nanofiber composites, this study presents an eco-friendly approach to addressing environmental pollution while creating sustainable materials with superior mechanical, thermal, and optical properties.
这项研究介绍了一种新颖的升级再造方法,可将香烟过滤嘴这种丰富且持久的环境废弃物转化为高性能的纤维素纳米纤维增强型环氧树脂复合材料。创新之处在于通过多步纯化和静电纺丝工艺从用过的香烟滤嘴中提取醋酸纤维素纳米纤维,然后通过碱性水解将其转化为再生纤维素纳米纤维。这种双纤维方法使我们能够制造四种不同的环氧树脂复合材料,每种复合材料都由不同类型的纳米纤维增强:回收醋酸纤维素纳米纤维、来自回收香烟过滤嘴的再生纤维素纳米纤维,以及它们的商业对应物。值得注意的是,这是首次将源自废烟过滤嘴的再生纳米纤维用于环氧树脂复合材料增强,为主要污染物提供了一种可持续且高附加值的利用方式。全面的特性分析,包括傅里叶变换红外光谱(FTIR)、X 射线衍射(XRD)、扫描电子显微镜(SEM)和接触角测量,证实了纤维素纳米纤维的成功再生,表现出更好的亲水性、降低的结晶度以及直径在 200-300nm 之间的均匀纳米纤维形态。该创新进一步扩展到这些复合材料的机械性能:拉伸测试表明,那些用再生纤维素纳米纤维增强的复合材料表现出更高的拉伸强度(49.5-53.8MPa),明显优于醋酸纤维素纳米纤维复合材料(40.1-42.6MPa)和纯环氧树脂(31.4MPa)。这种显著的改进归因于增强了纳米纤维在环氧树脂基质中的分散和界面附着力,这是超越传统复合材料的重要进展。此外,热分析表明,所有复合材料在 300-400°C 范围内保持热稳定性,与商业替代品相当。再生纳米纤维增强复合材料由于光散射减少而显示出增强的光学透明度,使其成为既需要机械强度又需要光学清晰度的应用的理想选择。通过开创性地使用香烟过滤嘴废物来制造先进的纤维素纳米纤维复合材料,本研究提供了一种环保的方法来解决环境污染问题,同时创造具有卓越机械、热和光学性能的可持续材料。