Suppr超能文献

用于宽带、超高效非线性转换和纠缠光子产生的InGaPχ集成光子学平台。

InGaP χ integrated photonics platform for broadband, ultra-efficient nonlinear conversion and entangled photon generation.

作者信息

Akin Joshua, Zhao Yunlei, Misra Yuvraj, Haque A K M Naziul, Fang Kejie

机构信息

Holonyak Micro and Nanotechnology Laboratory and Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.

Illinois Quantum Information Science and Technology Center, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.

出版信息

Light Sci Appl. 2024 Oct 15;13(1):290. doi: 10.1038/s41377-024-01653-5.

Abstract

Nonlinear optics plays an important role in many areas of science and technology. The advance of nonlinear optics is empowered by the discovery and utilization of materials with growing optical nonlinearity. Here we demonstrate an indium gallium phosphide (InGaP) integrated photonics platform for broadband, ultra-efficient second-order nonlinear optics. The InGaP nanophotonic waveguide enables second-harmonic generation with a normalized efficiency of 128, 000%/W/cm at 1.55 μm pump wavelength, nearly two orders of magnitude higher than the state of the art in the telecommunication C band. Further, we realize an ultra-bright, broadband time-energy entangled photon source with a pair generation rate of 97 GHz/mW and a bandwidth of 115 nm centered at the telecommunication C band. The InGaP entangled photon source shows high coincidence-to-accidental counts ratio CAR > 10 and two-photon interference visibility > 98%. The InGaP second-order nonlinear photonics platform will have wide-ranging implications for non-classical light generation, optical signal processing, and quantum networking.

摘要

非线性光学在许多科学和技术领域发挥着重要作用。材料光学非线性不断增强,其发现和利用推动了非线性光学的发展。在此,我们展示了一种用于宽带、超高效二阶非线性光学的磷化铟镓(InGaP)集成光子学平台。InGaP纳米光子波导在1.55μm泵浦波长下实现了归一化效率为128,000%/W/cm的二次谐波产生,比电信C波段的现有技术高出近两个数量级。此外,我们实现了一种超亮、宽带的时间-能量纠缠光子源,对产生率为97 GHz/mW,带宽为115 nm,中心位于电信C波段。InGaP纠缠光子源显示出高符合计数与偶然计数比CAR > 10以及双光子干涉可见度> 98%。InGaP二阶非线性光子学平台将对非经典光产生、光信号处理和量子网络产生广泛影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec58/11473533/21a98badda60/41377_2024_1653_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验