Demeersseman Nele, Rocchi Maria, Fehervary Heleen, Collazo Guillermo Fernández, Meyns Bart, Fresiello Libera, Famaey Nele
Biomechanics Section, KU Leuven, Leuven, Belgium.
Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.
Cardiovasc Eng Technol. 2025 Feb;16(1):34-51. doi: 10.1007/s13239-024-00755-w. Epub 2024 Oct 14.
Cardiovascular simulators are used in the preclinical testing phase of medical devices. Their reliability increases the more they resemble clinically relevant scenarios. In this study, a physiologically actuated soft robotic left ventricle (SRLV) embedded in a hybrid (in silico- in vitro) simulator of the cardiovascular system is presented, along with its experimental and computational analysis.
A SRLV phantom, developed from a patient's CT scan using polyvinyl alcohol (PVA), is embedded in a hybrid cardiovascular simulator. We present an activation method in which the hydraulic pressure external ( ) to the SRLV is continuously adapted to regulate the left ventricular volume ( ), considering the geometry and material behavior of the SRLV and the left ventricular pressure ( ). This activation method is verified using a finite element (FE) model of the SRLV and validated in the hybrid simulator. Different hemodynamic profiles are presented to test the flexibility of the method.
Both the FE model and hybrid simulator could represent the desired in silico data ( , ) with the implemented activation method, with deviations below 8.09% in the FE model and mainly < 10% errors in the hybrid simulator. Only two measurements out of 32 exceeded the 10% threshold due to simulator setup limitations.
The activation method effectively allows to represent various pressure-volume loops, as verified numerically, and validated experimentally in the hybrid simulator. This work presents a high-fidelity platform designed to simulate cardiovascular conditions, offering a robust foundation for future testing of cardiovascular medical devices under physiological conditions.
心血管模拟器用于医疗设备的临床前测试阶段。它们越接近临床相关场景,其可靠性就越高。在本研究中,介绍了一种嵌入心血管系统混合(计算机模拟 - 体外)模拟器中的生理驱动软机器人左心室(SRLV),以及其实验和计算分析。
使用聚乙烯醇(PVA)从患者的CT扫描开发的SRLV模型嵌入混合心血管模拟器中。我们提出了一种激活方法,其中考虑SRLV的几何形状和材料行为以及左心室压力(),连续调整SRLV外部的液压()以调节左心室容积()。使用SRLV的有限元(FE)模型验证此激活方法,并在混合模拟器中进行验证。呈现不同的血流动力学曲线以测试该方法的灵活性。
通过实施的激活方法,有限元模型和混合模拟器都可以表示所需的计算机模拟数据(,),有限元模型中的偏差低于8.09%,混合模拟器中的误差主要<10%。由于模拟器设置限制,32次测量中只有两次超过了10%的阈值。
如数值验证和在混合模拟器中实验验证的那样,激活方法有效地允许表示各种压力 - 容积环。这项工作提出了一个旨在模拟心血管状况的高保真平台,为未来在生理条件下测试心血管医疗设备提供了坚实的基础。