文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

元基因组组装往往在抗生素抗性基因周围断裂。

Metagenomic assemblies tend to break around antibiotic resistance genes.

机构信息

Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10A, Gothenburg, 413 46, Sweden.

Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, 412 96, Sweden.

出版信息

BMC Genomics. 2024 Oct 14;25(1):959. doi: 10.1186/s12864-024-10876-0.


DOI:10.1186/s12864-024-10876-0
PMID:39402510
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11479545/
Abstract

BACKGROUND: Assembly of metagenomic samples can provide essential information about the mobility potential and taxonomic origin of antibiotic resistance genes (ARGs) and inform interventions to prevent further spread of resistant bacteria. However, similar to other conserved regions, such as ribosomal RNA genes and mobile genetic elements, almost identical ARGs typically occur in multiple genomic contexts across different species, representing a considerable challenge for the assembly process. Usually, this results in many fragmented contigs of unclear origin, complicating the risk assessment of ARG detections. To systematically investigate the impact of this issue on detection, quantification and contextualization of ARGs, we evaluated the performance of different assembly approaches, including genomic-, metagenomic- and transcriptomic-specialized assemblers. We quantified recovery and accuracy rates of each tool for ARGs both from in silico spiked metagenomic samples as well as real samples sequenced using both long- and short-read sequencing technologies. RESULTS: The results revealed that none of the investigated tools can accurately capture genomic contexts present in samples of high complexity. The transcriptomic assembler Trinity showed a better performance in terms of reconstructing longer and fewer contigs matching unique genomic contexts, which can be beneficial for deciphering the taxonomic origin of ARGs. The currently commonly used metagenomic assembly tools metaSPAdes and MEGAHIT were able to identify the ARG repertoire but failed to fully recover the diversity of genomic contexts present in a sample. On top of that, in a complex scenario MEGAHIT produced very short contigs, which can lead to considerable underestimation of the resistome in a given sample. CONCLUSIONS: Our study shows that metaSPAdes and Trinity would be the preferable tools in terms of accuracy to recover correct genomic contexts around ARGs in metagenomic samples characterized by uneven coverages. Overall, the inability of assemblers to reconstruct long ARG-containing contigs has impacts on ARG quantification, suggesting that directly mapping reads to an ARG database should be performed as a complementary strategy to get accurate ARG abundance and diversity measures.

摘要

背景:组装宏基因组样本可以提供有关抗生素抗性基因(ARGs)的移动潜力和分类起源的重要信息,并为防止耐药细菌进一步传播提供干预措施。然而,与核糖体 RNA 基因和移动遗传元件等其他保守区域类似,几乎相同的 ARGs 通常存在于不同物种的多个基因组环境中,这对组装过程构成了相当大的挑战。通常,这会导致许多来源不明的碎片化 contigs,从而使 ARG 检测的风险评估变得复杂。为了系统地研究这个问题对 ARG 检测、定量和语境化的影响,我们评估了不同组装方法的性能,包括基因组、宏基因组和转录组专业化组装器。我们量化了每个工具对来自模拟宏基因组样本和使用长读和短读测序技术测序的真实样本中 ARGs 的恢复率和准确性。

结果:结果表明,没有一种研究工具可以准确捕获高复杂性样本中的基因组环境。转录组组装器 Trinity 在重建与独特基因组环境匹配的更长和更少 contigs 方面表现出更好的性能,这有助于解析 ARG 的分类起源。目前常用的宏基因组组装工具 metaSPAdes 和 MEGAHIT 能够识别 ARG 库,但无法完全恢复样本中存在的基因组环境多样性。除此之外,在复杂情况下,MEGAHIT 产生的 contigs 非常短,这可能导致给定样本中的抗药性基因被严重低估。

结论:我们的研究表明,在覆盖不均匀的宏基因组样本中,metaSPAdes 和 Trinity 在准确性方面更适合恢复正确的 ARG 周围的基因组环境。总体而言,组装器无法构建长的含 ARG 的 contigs 会对 ARG 定量产生影响,这表明应该将读取直接映射到 ARG 数据库,作为获得准确的 ARG 丰度和多样性测量的补充策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea7b/11479545/c6da08e2b18b/12864_2024_10876_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea7b/11479545/e4818628217e/12864_2024_10876_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea7b/11479545/792acc895f48/12864_2024_10876_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea7b/11479545/c69fe23c2e97/12864_2024_10876_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea7b/11479545/d2d04fcc181a/12864_2024_10876_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea7b/11479545/84bd6ec0db6a/12864_2024_10876_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea7b/11479545/a3f63003df9a/12864_2024_10876_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea7b/11479545/c6da08e2b18b/12864_2024_10876_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea7b/11479545/e4818628217e/12864_2024_10876_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea7b/11479545/792acc895f48/12864_2024_10876_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea7b/11479545/c69fe23c2e97/12864_2024_10876_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea7b/11479545/d2d04fcc181a/12864_2024_10876_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea7b/11479545/84bd6ec0db6a/12864_2024_10876_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea7b/11479545/a3f63003df9a/12864_2024_10876_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea7b/11479545/c6da08e2b18b/12864_2024_10876_Fig7_HTML.jpg

相似文献

[1]
Metagenomic assemblies tend to break around antibiotic resistance genes.

BMC Genomics. 2024-10-14

[2]
Comparison of long- and short-read metagenomic assembly for low-abundance species and resistance genes.

Brief Bioinform. 2023-3-19

[3]
Critical evaluation of short, long, and hybrid assembly for contextual analysis of antibiotic resistance genes in complex environmental metagenomes.

Sci Rep. 2021-2-12

[4]
Fragmentation and Coverage Variation in Viral Metagenome Assemblies, and Their Effect in Diversity Calculations.

Front Bioeng Biotechnol. 2015-9-17

[5]
Metagenomic Assembly Reveals Hosts of Antibiotic Resistance Genes and the Shared Resistome in Pig, Chicken, and Human Feces.

Environ Sci Technol. 2015-12-22

[6]
Metagenomic approach revealed the mobility and co-occurrence of antibiotic resistomes between non-intensive aquaculture environment and human.

Microbiome. 2024-6-14

[7]
Modeling the limits of detection for antimicrobial resistance genes in agri-food samples: a comparative analysis of bioinformatics tools.

BMC Microbiol. 2024-1-20

[8]
Metagenomic investigation of antibiotic resistance genes and resistant bacteria contamination in pharmaceutical plant sites in China.

Environ Pollut. 2024-9-15

[9]
Antibiotic resistance gene dynamics in the commensal infant gut microbiome over the first year of life.

Sci Rep. 2024-8-12

[10]
Metagenomic surveillance of antibiotic resistome in influent and effluent of wastewater treatment plants located on the Qinghai-Tibetan Plateau.

Sci Total Environ. 2023-4-20

引用本文的文献

[1]
Overcoming challenges in metagenomic AMR surveillance with nanopore sequencing: a case study on fluoroquinolone resistance.

Front Microbiol. 2025-7-23

[2]
Plasmid genomic epidemiology of carbapenemase-producing in Canada from 2010 to 2023.

Microb Genom. 2025-8

[3]
ARGContextProfiler: extracting and scoring the genomic contexts of antibiotic resistance genes using assembly graphs.

Front Microbiol. 2025-5-21

[4]
Long-Read Sequencing for the Rapid Response to Infectious Diseases Outbreaks.

Curr Clin Microbiol Rep. 2025

[5]
Dynamics of gut resistome and mobilome in early life: a meta-analysis.

EBioMedicine. 2025-4

[6]
From Metagenomes to Functional Expression of Resistance: Gene Diversity in Bacteria from Salmon Farms.

Antibiotics (Basel). 2025-1-24

[7]
Species-resolved profiling of antibiotic resistance genes in complex metagenomes through long-read overlapping with Argo.

Nat Commun. 2025-2-18

[8]
Unveiling the Resistome Landscape in Peri-Implant Health and Disease.

J Clin Med. 2025-1-31

[9]
Global genomic epidemiology of carbapenemase-associated integrons.

Microb Genom. 2024-12

[10]
Versatile and Portable Cas12a-mediated Detection of Antibiotic Resistance Markers.

bioRxiv. 2024-11-14

本文引用的文献

[1]
Towards monitoring of antimicrobial resistance in the environment: For what reasons, how to implement it, and what are the data needs?

Environ Int. 2023-8

[2]
A global baseline for qPCR-determined antimicrobial resistance gene prevalence across environments.

Environ Int. 2023-8

[3]
Comparison of long- and short-read metagenomic assembly for low-abundance species and resistance genes.

Brief Bioinform. 2023-3-19

[4]
Capturing variation in metagenomic assembly graphs with MetaCortex.

Bioinformatics. 2023-1-1

[5]
Antibiotic resistome alteration along a full-scale drinking water supply system deciphered by metagenome assembly: Regulated by seasonality, mobile gene elements and antibiotic resistant gene hosts.

Sci Total Environ. 2023-3-1

[6]
Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance.

Nat Commun. 2022-12-1

[7]
Globally distributed mining-impacted environments are underexplored hotspots of multidrug resistance genes.

ISME J. 2022-9

[8]
Critical Assessment of Metagenome Interpretation: the second round of challenges.

Nat Methods. 2022-4

[9]
ResFinder - an open online resource for identification of antimicrobial resistance genes in next-generation sequencing data and prediction of phenotypes from genotypes.

Microb Genom. 2022-1

[10]
Hybrid, ultra-deep metagenomic sequencing enables genomic and functional characterization of low-abundance species in the human gut microbiome.

Gut Microbes. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索