文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

CD81 导向的异源外泌体与乳腺癌细胞呈现出异质相互作用。

CD81-guided heterologous EVs present heterogeneous interactions with breast cancer cells.

机构信息

Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy.

Advanced Imaging Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy.

出版信息

J Biomed Sci. 2024 Oct 15;31(1):92. doi: 10.1186/s12929-024-01084-9.


DOI:10.1186/s12929-024-01084-9
PMID:39402557
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11475557/
Abstract

BACKGROUND: Extracellular vesicles (EVs) are cell-secreted particles conceived as natural vehicles for intercellular communication. The capacity to entrap heterogeneous molecular cargoes and target specific cell populations through EV functionalization promises advancements in biomedical applications. However, the efficiency of the obtained EVs, the contribution of cell-exposed receptors to EV interactions, and the predictability of functional cargo release with potential sharing of high molecular weight recombinant mRNAs are crucial for advancing heterologous EVs in targeted therapy applications. METHODS: In this work, we selected the popular EV marker CD81 as a transmembrane guide for fusion proteins with a C-terminal GFP reporter encompassing or not Trastuzumab light chains targeting the HER2 receptor. We performed high-content imaging analyses to track EV-cell interactions, including isogenic breast cancer cells with manipulated HER2 expression. We validated the functional cargo delivery of recombinant EVs carrying doxorubicin upon EV-donor cell treatment. Then, we performed an in vivo study using JIMT-1 cells commonly used as HER2-refractory, trastuzumab-resistant model to detect a more than 2000 nt length recombinant mRNA in engrafted tumors. RESULTS: Fusion proteins participated in vesicular trafficking dynamics and accumulated on secreted EVs according to their expression levels in HEK293T cells. Despite the presence of GFP, secreted EV populations retained a HER2 receptor-binding capacity and were used to track EV-cell interactions. In time-frames where the global EV distribution did not change between HER2-positive (SK-BR-3) or -negative (MDA-MB-231) breast cancer cell lines, the HER2 exposure in isogenic cells remarkably affected the tropism of heterologous EVs, demonstrating the specificity of antiHER2 EVs representing about 20% of secreted bulk vesicles. The specific interaction strongly correlated with improved cell-killing activity of doxorubicin-EVs in MDA-MB-231 ectopically expressing HER2 and reduced toxicity in SK-BR-3 with a knocked-out HER2 receptor, overcoming the effects of the free drug. Interestingly, the fusion protein-corresponding transcripts present as full-length mRNAs in recombinant EVs could reach orthotopic breast tumors in JIMT-1-xenografted mice, improving our sensitivity in detecting penetrant cargoes in tissue biopsies. CONCLUSIONS: This study highlights the quantitative aspects underlying the creation of a platform for secreted heterologous EVs and shows the limits of single receptor-ligand interactions behind EV-cell engagement mechanisms, which now become the pivotal step to predict functional tropism and design new generations of EV-based nanovehicles.

摘要

背景:细胞外囊泡 (EVs) 被认为是细胞间通讯的天然载体,是细胞分泌的颗粒。通过 EV 功能化来捕获异质分子货物并靶向特定细胞群体的能力有望推动生物医学应用的发展。然而,获得的 EV 的效率、细胞暴露的受体对 EV 相互作用的贡献以及具有潜在高相对分子质量重组 mRNA 共享的功能货物释放的可预测性对于推进靶向治疗应用中的异源 EV 至关重要。

方法:在这项工作中,我们选择了流行的 EV 标志物 CD81 作为跨膜向导,用于融合蛋白,融合蛋白的 C 端 GFP 报告器包含或不包含针对 HER2 受体的曲妥珠单抗轻链。我们进行了高内涵成像分析,以跟踪 EV-细胞相互作用,包括 HER2 表达受调控的同基因乳腺癌细胞。我们验证了携带阿霉素的重组 EV 在 EV 供体细胞处理后递送功能性货物。然后,我们使用 JIMT-1 细胞进行了体内研究,JIMT-1 细胞通常用作 HER2 耐药、曲妥珠单抗耐药模型,以检测植入肿瘤中超过 2000 个核苷酸长度的重组 mRNA。

结果:融合蛋白参与了囊泡运输动力学,并根据其在 HEK293T 细胞中的表达水平在分泌的 EV 上积累。尽管存在 GFP,但分泌的 EV 群体仍然保留了 HER2 受体结合能力,并被用于跟踪 EV-细胞相互作用。在 HER2 阳性 (SK-BR-3) 或阴性 (MDA-MB-231) 乳腺癌细胞系之间的全局 EV 分布没有变化的时间范围内,同基因细胞中 HER2 的暴露显著影响了异源 EV 的趋向性,证明了抗 HER2 EV 的特异性,其代表了分泌的大量囊泡的约 20%。特异性相互作用与 MDA-MB-231 中过表达 HER2 的阿霉素-EV 的细胞杀伤活性的提高以及 SK-BR-3 中敲除 HER2 受体的毒性降低强烈相关,克服了游离药物的影响。有趣的是,融合蛋白对应的转录本以全长 mRNA 的形式存在于重组 EV 中,可以到达 JIMT-1 异种移植小鼠的原位乳腺肿瘤,提高了我们在组织活检中检测穿透性货物的敏感性。

结论:这项研究强调了创建分泌异源 EV 平台的定量方面,并展示了 EV-细胞结合机制背后的单个受体-配体相互作用的局限性,这现在成为预测功能趋向性和设计新一代 EV 为基础的纳米载体的关键步骤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/386b/11475557/a964e1f1d598/12929_2024_1084_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/386b/11475557/52159d8236a2/12929_2024_1084_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/386b/11475557/9f17a8c338ea/12929_2024_1084_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/386b/11475557/f8531dd18255/12929_2024_1084_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/386b/11475557/1e672cc5cd34/12929_2024_1084_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/386b/11475557/fa10bfa710be/12929_2024_1084_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/386b/11475557/a964e1f1d598/12929_2024_1084_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/386b/11475557/52159d8236a2/12929_2024_1084_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/386b/11475557/9f17a8c338ea/12929_2024_1084_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/386b/11475557/f8531dd18255/12929_2024_1084_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/386b/11475557/1e672cc5cd34/12929_2024_1084_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/386b/11475557/fa10bfa710be/12929_2024_1084_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/386b/11475557/a964e1f1d598/12929_2024_1084_Fig6_HTML.jpg

相似文献

[1]
CD81-guided heterologous EVs present heterogeneous interactions with breast cancer cells.

J Biomed Sci. 2024-10-15

[2]
Multiparametric profiling of HER2-enriched extracellular vesicles in breast cancer using Single Extracellular VEsicle Nanoscopy.

J Nanobiotechnology. 2024-9-28

[3]
Anti-HER2 scFv-Directed Extracellular Vesicle-Mediated mRNA-Based Gene Delivery Inhibits Growth of HER2-Positive Human Breast Tumor Xenografts by Prodrug Activation.

Mol Cancer Ther. 2018-2-26

[4]
Quantification of protein cargo loading into engineered extracellular vesicles at single-vesicle and single-molecule resolution.

J Extracell Vesicles. 2021-8

[5]
Defining the relationship between cellular and extracellular vesicle (EV) content in breast cancer via an integrative multi-omic analysis.

Proteomics. 2024-6

[6]
Trastuzumab-induced upregulation of a protein set in extracellular vesicles emitted by ErbB2-positive breast cancer cells correlates with their trastuzumab sensitivity.

Breast Cancer Res. 2020-10-6

[7]
The cell type dependent sorting of CD9- and CD81 to extracellular vesicles can be exploited to convey tumor sensitive cargo to target cells.

Drug Deliv. 2023-12

[8]
Heterologous and cross-species tropism of cancer-derived extracellular vesicles.

Theranostics. 2019-8-9

[9]
Diverse Populations of Extracellular Vesicles with Opposite Functions during Herpes Simplex Virus 1 Infection.

J Virol. 2021-2-24

[10]
CD81 fusion alters SARS-CoV-2 Spike trafficking.

mBio. 2024-9-11

引用本文的文献

[1]
NAMPT and NNMT released via extracellular vesicles and as soluble mediators are distinguished traits of BRAF inhibitor resistance of melanoma cells impacting on the tumor microenvironment.

Cell Commun Signal. 2025-7-21

[2]
Targeting glucocorticoid receptor signaling pathway for treatment of stress-related brain disorders.

Pharmacol Rep. 2024-12

本文引用的文献

[1]
Extracellular vesicle-mediated protein delivery to the liver.

J Extracell Biol. 2023-8-25

[2]
A highly sensitive and selective fluorescent biosensor for breast cancer derived exosomes using click reaction of azide-CD63 aptamer and alkyne-polymer dots.

Anal Methods. 2024-5-3

[3]
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches.

J Extracell Vesicles. 2024-2

[4]
Metabolic labelling of a subpopulation of small extracellular vesicles using a fluorescent palmitic acid analogue.

J Extracell Vesicles. 2023-12

[5]
Surfaceome analysis of extracellular vesicles from senescent cells uncovers uptake repressor DPP4.

Proc Natl Acad Sci U S A. 2023-10-24

[6]
Engineering CAR-NK cell derived exosome disguised nano-bombs for enhanced HER2 positive breast cancer brain metastasis therapy.

J Control Release. 2023-11

[7]
Differential proteomics argues against a general role for CD9, CD81 or CD63 in the sorting of proteins into extracellular vesicles.

J Extracell Vesicles. 2023-8

[8]
Tyrosine kinase inhibitors and human epidermal growth factor receptor-2 positive breast cancer.

World J Clin Oncol. 2023-5-24

[9]
A review of the regulatory mechanisms of extracellular vesicles-mediated intercellular communication.

Cell Commun Signal. 2023-4-13

[10]
Single vesicle analysis reveals the release of tetraspanin positive extracellular vesicles into circulation with high intensity intermittent exercise.

J Physiol. 2023-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索