Suppr超能文献

基于人工智能的肝硬化预后评估。

Artificial intelligence-based evaluation of prognosis in cirrhosis.

机构信息

Department of Gastroenterology Nursing Unit, Ward 192, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.

The School of Nursing, Wenzhou Medical University, Wenzhou, 325000, China.

出版信息

J Transl Med. 2024 Oct 14;22(1):933. doi: 10.1186/s12967-024-05726-2.

Abstract

Cirrhosis represents a significant global health challenge, characterized by high morbidity and mortality rates that severely impact human health. Timely and precise prognostic assessments of liver cirrhosis are crucial for improving patient outcomes and reducing mortality rates as they enable physicians to identify high-risk patients and implement early interventions. This paper features a thorough literature review on the prognostic assessment of liver cirrhosis, aiming to summarize and delineate the present status and constraints associated with the application of traditional prognostic tools in clinical settings. Among these tools, the Child-Pugh and Model for End-Stage Liver Disease (MELD) scoring systems are predominantly utilized. However, their accuracy varies significantly. These systems are generally suitable for broad assessments but lack condition-specific applicability and fail to capture the risks associated with dynamic changes in patient conditions. Future research in this field is poised for deep exploration into the integration of artificial intelligence (AI) with routine clinical and multi-omics data in patients with cirrhosis. The goal is to transition from static, unimodal assessment models to dynamic, multimodal frameworks. Such advancements will not only improve the precision of prognostic tools but also facilitate personalized medicine approaches, potentially revolutionizing clinical outcomes.

摘要

肝硬化是一个全球性的重大健康挑战,其发病率和死亡率都很高,严重影响人类健康。及时、准确地对肝硬化进行预后评估对于改善患者预后和降低死亡率至关重要,因为它可以帮助医生识别高危患者并进行早期干预。本文对肝硬化的预后评估进行了全面的文献回顾,旨在总结和描述传统预后工具在临床应用中的现状和局限性。在这些工具中,Child-Pugh 和终末期肝病模型(MELD)评分系统被广泛应用。然而,它们的准确性存在显著差异。这些系统通常适用于广泛评估,但缺乏针对特定情况的适用性,并且无法捕捉患者病情动态变化相关的风险。该领域的未来研究有望深入探讨人工智能(AI)与肝硬化患者常规临床和多组学数据的整合。目标是从静态、单模态评估模型向动态、多模态框架转变。这些进展不仅将提高预后工具的准确性,还将促进个性化医疗方法的发展,有可能彻底改变临床结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6742/11475999/73491745f3ee/12967_2024_5726_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验