Suppr超能文献

缩小脾脏B细胞淋巴瘤生物学与分类之间的差距。

Closing the gap between biology and classification in splenic B-cell lymphomas.

作者信息

Blombery Piers, de Jong Daphne, Ferry Judith A, Hsi Eric D, Ondrejka Sarah L, Seymour John F, Zamò Alberto, Tzankov Alexandar

机构信息

Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.

Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.

出版信息

Histopathology. 2025 Jan;86(1):69-78. doi: 10.1111/his.15323. Epub 2024 Oct 15.

Abstract

The mature splenic B-cell lymphomas are an enigmatic group of lymphoid neoplasms that have long caused significant difficulty for the practicing pathologist due to overlapping diagnostic features among entities and the decreasing availability of splenic tissue for assessment. While some entities have highly characteristic and specific clinicopathological features (e.g. hairy cell leukaemia), others are substantially more difficult to recognise (e.g. splenic diffuse red pulp lymphoma). At the same time, classification systems have been evolving, resulting in multiple changes to the boundaries among these entities and even the existence of some entities in their own right. Moreover, unbiased multi-omic interrogation (whole genome/transcriptome sequencing, methylome) of the splenic B-cell lymphomas over the past decade has given us significant insights into the underling biology of these neoplasms. We present a clinicopathological perspective on the historical, current and future state of the diagnosis and classification of splenic B-cell lymphomas integrating multi-omic data and highlighting areas of focus for the field in order to continue to strive to improve patient outcomes through accurate diagnosis.

摘要

成熟脾B细胞淋巴瘤是一组难以捉摸的淋巴样肿瘤,长期以来,由于各实体之间诊断特征重叠以及用于评估的脾组织越来越少,给执业病理学家带来了很大困难。虽然有些实体具有高度特征性和特异性的临床病理特征(如毛细胞白血病),但其他实体则更难识别(如脾弥漫性红髓淋巴瘤)。与此同时,分类系统一直在不断发展,导致这些实体之间的界限多次变化,甚至有些实体本身的存在也有所改变。此外,在过去十年中,对脾B细胞淋巴瘤进行的无偏倚多组学研究(全基因组/转录组测序、甲基化组)让我们对这些肿瘤的潜在生物学特性有了重要认识。我们从临床病理学角度阐述脾B细胞淋巴瘤诊断和分类的历史、现状及未来发展,整合多组学数据,并突出该领域的重点关注领域,以便通过准确诊断继续努力改善患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b8e/11648355/af6d5fa285de/HIS-86-69-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验