School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China.
Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, P. R. China.
ACS Appl Mater Interfaces. 2024 Oct 23;16(42):56623-56633. doi: 10.1021/acsami.4c09402. Epub 2024 Oct 15.
Developing a colorimetry-based artificial scent screening system (i.e., an olfactory visual sensing system) with high sensitivity and accurate pattern recognition for detecting fruit ripeness remains challenging. In this work, we construct a flexible dye/CelluMOFs-based sensor array with improved sensitivity for on-site detection of characteristic gases of fruits and integrate a densely connected convolutional network (DenseNet) into the sensor array, enabling it to recognize unique scent fingerprints and categorize the ripeness of fruits. In the system, CelluMOFs are synthesized through in situ growth of γ-cyclodextrin metal-organic frameworks (γ-CD-MOFs) on flexible fiber filter paper to fabricate a uniform, flexible and porous dye/CelluMOFs sensitive membrane. Compared to the pristine filter paper, the CelluMOFs exhibit increased porosity with a 62 times higher specific surface area and a 3-fold increase in dye loading capacity after 12 h of adsorption. The prepared dye/CelluMOFs sensing film shows outstanding mechanical and detection stability with negligible deviation after 100 cycles of rubbing. The colorimetric visualization arrays with multiple colorimetric dye/CelluMOFs chips, enable the sensitive recognition and detection of nine kinds of characteristic fruit odors and achieve a high response at 8-1500 ppm of -2-hexenal, showcasing remarkably low gas detection thresholds. On the basis of the ppm-level limit of detection with high sensitivity, the fabricated colorimetric sensor arrays are typically used for in situ assessment of fruit ripeness by integrating DenseNet. This approach achieves a satisfactory classification accuracy of 99.09% on the validation set, enabling high-precision prediction of fruit ripeness levels.
开发一种基于比色法的人工气味筛选系统(即嗅觉视觉传感系统),以实现高灵敏度和准确的模式识别,用于检测水果成熟度仍然具有挑战性。在这项工作中,我们构建了一个具有改进灵敏度的柔性染料/CelluMOFs 基传感器阵列,用于现场检测水果的特征气体,并将密集连接卷积网络(DenseNet)集成到传感器阵列中,使其能够识别独特的气味指纹并对水果的成熟度进行分类。在该系统中,CelluMOFs 通过在柔性纤维滤纸上原位生长γ-环糊精金属有机骨架(γ-CD-MOFs)来合成,以制造均匀、灵活且多孔的染料/CelluMOFs 敏感膜。与原始滤纸条相比,CelluMOFs 的孔隙率增加了 62 倍,比表面积增加了 62 倍,吸附 12 小时后染料负载量增加了 3 倍。制备的染料/CelluMOFs 传感膜具有出色的机械和检测稳定性,在 100 次摩擦循环后几乎没有偏差。具有多个比色染料/CelluMOFs 芯片的比色可视化阵列能够灵敏地识别和检测九种特征水果气味,并在 -2-己烯醛 8-1500 ppm 范围内实现高响应,显示出极低的气体检测阈值。基于高灵敏度的 ppm 级检测限,所制备的比色传感器阵列通常通过集成 DenseNet 用于原位评估水果成熟度。这种方法在验证集上实现了 99.09%的满意分类准确率,能够高精度地预测水果成熟度水平。