Suppr超能文献

基于人工嗅觉传感器和深度学习的综合水果成熟度评估系统

Integrated Fruit Ripeness Assessment System Based on an Artificial Olfactory Sensor and Deep Learning.

作者信息

Zhao Mingming, You Zhiheng, Chen Huayun, Wang Xiao, Ying Yibin, Wang Yixian

机构信息

School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.

Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China.

出版信息

Foods. 2024 Mar 4;13(5):793. doi: 10.3390/foods13050793.

Abstract

Artificial scent screening systems, inspired by the mammalian olfactory system, hold promise for fruit ripeness detection, but their commercialization is limited by low sensitivity or pattern recognition inaccuracy. This study presents a portable fruit ripeness prediction system based on colorimetric sensing combinatorics and deep convolutional neural networks (DCNN) to accurately identify fruit ripeness. Using the gas chromatography-mass spectrometry (GC-MS) method, the study discerned the distinctive gases emitted by mango, peach, and banana across various ripening stages. The colorimetric sensing combinatorics utilized 25 dyes sensitive to fruit volatile gases, generating a distinct scent fingerprint through cross-reactivity to diverse concentrations and varieties of gases. The unique scent fingerprints can be identified using DCNN. After capturing colorimetric sensor image data, the densely connected convolutional network (DenseNet) was employed, achieving an impressive accuracy rate of 97.39% on the validation set and 82.20% on the test set in assessing fruit ripeness. This fruit ripeness prediction system, coupled with a DCNN, successfully addresses the issues of complex pattern recognition and low identification accuracy. Overall, this innovative tool exhibits high accuracy, non-destructiveness, practical applicability, convenience, and low cost, making it worth considering and developing for fruit ripeness detection.

摘要

受哺乳动物嗅觉系统启发的人工气味筛选系统在水果成熟度检测方面具有潜力,但其商业化受到低灵敏度或模式识别不准确的限制。本研究提出了一种基于比色传感组合和深度卷积神经网络(DCNN)的便携式水果成熟度预测系统,以准确识别水果成熟度。该研究采用气相色谱 - 质谱(GC - MS)方法,辨别了芒果、桃子和香蕉在不同成熟阶段释放的独特气体。比色传感组合使用了25种对水果挥发性气体敏感的染料,通过对不同浓度和种类气体的交叉反应生成独特的气味指纹。利用DCNN可以识别这些独特的气味指纹。在获取比色传感器图像数据后,采用密集连接卷积网络(DenseNet),在评估水果成熟度时,在验证集上的准确率达到了97.39%,在测试集上达到了82.20%。这种结合了DCNN的水果成熟度预测系统成功解决了复杂模式识别和低识别准确率的问题。总体而言,这种创新工具具有高精度、无损性、实际适用性、便利性和低成本等特点,值得在水果成熟度检测方面加以考虑和开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9811/10931156/d29da10a4439/foods-13-00793-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验