Suppr超能文献

开发和验证 MEDLINE(PubMed)的地理搜索筛选器,以识别有关德国的研究。

Development and validation of a geographic search filter for MEDLINE (PubMed) to identify studies about Germany.

机构信息

Faculty of Health Sciences Brandenburg, Brandenburg Medical School (Theodor Fontane), Institute for Health Services and Health System Research, Rüdersdorf, Germany.

Center for Health Services Research, Brandenburg Medical School (Theodor Fontane), Rüdersdorf, Germany.

出版信息

Res Synth Methods. 2024 Nov;15(6):1147-1160. doi: 10.1002/jrsm.1763. Epub 2024 Oct 15.

Abstract

While geographic search filters exist, few of them are validated and there are currently none that focus on Germany. We aimed to develop and validate a highly sensitive geographic search filter for MEDLINE (PubMed) that identifies studies about Germany. First, using the relative recall method, we created a gold standard set of studies about Germany, dividing it into 'development' and 'testing' sets. Next, candidate search terms were identified using (i) term frequency analyses in the 'development set' and a random set of MEDLINE records; and (ii) a list of German geographic locations, compiled by our team. Then, we iteratively created the filter, evaluating it against the 'development' and 'testing' sets. To validate the filter, we conducted a number of case studies (CSs) and a simulation study. For this validation we used systematic reviews (SRs) that had included studies about Germany but did not restrict their search strategy geographically. When applying the filter to the original search strategies of the 17 SRs eligible for CSs, the median precision was 2.64% (interquartile range [IQR]: 1.34%-6.88%) versus 0.16% (IQR: 0.10%-0.49%) without the filter. The median number-needed-to-read (NNR) decreased from 625 (IQR: 211-1042) to 38 (IQR: 15-76). The filter achieved 100% sensitivity in 13 CSs, 85.71% in 2 CSs and 87.50% and 80% in the remaining 2 CSs. In a simulation study, the filter demonstrated an overall sensitivity of 97.19% and NNR of 42. The filter reliably identifies studies about Germany, enhancing screening efficiency and can be applied in evidence syntheses focusing on Germany.

摘要

虽然存在地理搜索过滤器,但其中很少经过验证,目前还没有专门针对德国的过滤器。我们旨在开发和验证一种针对 MEDLINE(PubMed)的高度敏感的地理搜索过滤器,以识别有关德国的研究。首先,使用相对召回率方法,我们创建了一个有关德国研究的黄金标准集,并将其分为“开发”和“测试”集。接下来,使用(i)在“开发集”和 MEDLINE 记录的随机集中进行的术语频率分析;以及(ii)我们团队编制的德国地理位置列表,确定候选搜索词。然后,我们迭代创建过滤器,并针对“开发”和“测试”集进行评估。为了验证过滤器,我们进行了一些案例研究(CS)和模拟研究。为此验证,我们使用了已包括有关德国的研究但未在地理上限制其搜索策略的系统评价(SR)。当将过滤器应用于有资格进行 CS 的 17 项 SR 的原始搜索策略时,中位数精度为 2.64%(四分位距[IQR]:1.34%-6.88%),而没有过滤器时为 0.16%(IQR:0.10%-0.49%)。中位数需要阅读的数量(NNR)从 625(IQR:211-1042)减少到 38(IQR:15-76)。过滤器在 13 个 CS 中实现了 100%的灵敏度,在 2 个 CS 中实现了 85.71%的灵敏度,在其余 2 个 CS 中实现了 87.50%和 80%的灵敏度。在模拟研究中,过滤器的总体灵敏度为 97.19%,NNR 为 42。该过滤器可可靠地识别有关德国的研究,提高了筛选效率,可应用于专注于德国的证据综合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验