Suppr超能文献

液态硫中短链的证据。

Evidence of short chains in liquid sulfur.

作者信息

Benmore Chris J, Sivaraman Ganesh

机构信息

X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.

Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.

出版信息

J Chem Phys. 2024 Oct 21;161(15). doi: 10.1063/5.0227014.

Abstract

High energy x-ray pair distribution function measurements show the average coordination number of the first shell in liquid sulfur is 1.86 ± 0.04 across the λ-transition, not precisely 2.0 as widely accepted. This indicates that upon melting, liquid sulfur does not comprise solely of S8 rings but also possesses a significant number of short chains. Intensities of the pre-peak and first diffraction peak of the x-ray structure factor and third peak height of the pair distribution function all show deviations at the λ-transition temperature Tλ, associated with the break-up of S8 rings and the start of oligomer polymerization. A significant number of non-bonded or loosely bonded "interstitial atoms," with an average coordination number of 0.20 ± 0.005, are also observed in the so-called "forbidden zone" between the first and second shells upon melting. The number of interstitial atoms is found to decrease to a minimum at the λ-transition, but the majority persist into the high temperature polymerized liquid. The existence of short chains and nearby interstitial atoms represent the two main factors required to initiate the S8-ring to chain transition, as proposed by recent molecular dynamics simulations.

摘要

高能X射线对分布函数测量结果表明,在整个λ转变过程中,液态硫中第一壳层的平均配位数为1.86±0.04,并非如广泛接受的那样精确为2.0。这表明在熔化时,液态硫并非仅由S8环组成,还含有大量短链。X射线结构因子的预峰和第一衍射峰的强度以及对分布函数的第三峰高度在λ转变温度Tλ处均出现偏差,这与S8环的破裂和低聚物聚合的开始有关。在熔化时,在第一和第二壳层之间的所谓“禁区”中还观察到大量非键合或弱键合的“间隙原子”,其平均配位数为0.20±0.005。发现间隙原子的数量在λ转变时减少到最小值,但大多数间隙原子会持续存在于高温聚合液体中。如最近的分子动力学模拟所提出的,短链和附近间隙原子的存在代表了引发S8环向链转变所需的两个主要因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验