Suppr超能文献

阵列式二硫化钨纳米管的合成

Synthesis of Arrayed Tungsten Disulfide Nanotubes.

作者信息

Ahad Abdul, Yomogida Yohei, Rahman Md Ashiqur, Ihara Akane, Miyata Yasumitsu, Hirose Yasushi, Shinokita Keisuke, Matsuda Kazunari, Liu Zheng, Yanagi Kazuhiro

机构信息

Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan.

Department of Physics, Comilla University, Cumilla 3506, Bangladesh.

出版信息

Nano Lett. 2024 Nov 13;24(45):14286-14292. doi: 10.1021/acs.nanolett.4c03895. Epub 2024 Oct 15.

Abstract

Tungsten disulfide nanotubes (WS-NTs), with their cylindrical structure composed of rolled WS sheets, have attracted much interest because of their unique physical properties reflecting quasi-one-dimensional chiral structures. They exhibit a semiconducting electronic structure regardless of their chirality, and various semiconducting and optoelectronic device applications have been demonstrated. The development of techniques to fabricate arrayed WS-NTs is crucial to realizing the highest device performance. Since the discovery of WS-NTs, various synthesis techniques have been reported; however, horizontally arrayed WS-NTs have never been successfully synthesized. Here, we demonstrate a simple technique to synthesize arrayed WS-NTs. Through precise temperature and gas control, WO nanowires are grown along the [1̅101] direction on an r-plane sapphire substrate, and the nanowires are converted into nanotubes via sulfurization under optimized conditions. The demonstrated synthesis technique for arrayed WS-NTs will play a central role in the fabrication of devices using transition-metal dichalcogenide nanotubes.

摘要

二硫化钨纳米管(WS-NTs)由卷曲的WS片组成其圆柱形结构,由于其反映准一维手性结构的独特物理性质而备受关注。无论其手性如何,它们都呈现出半导体电子结构,并且已经展示了各种半导体和光电器件应用。制造阵列式WS-NTs的技术发展对于实现最高器件性能至关重要。自WS-NTs被发现以来,已经报道了各种合成技术;然而,水平排列的WS-NTs从未成功合成过。在此,我们展示了一种合成阵列式WS-NTs的简单技术。通过精确的温度和气体控制,WO纳米线在r面蓝宝石衬底上沿[1̅101]方向生长,并且在优化条件下通过硫化将纳米线转化为纳米管。所展示的阵列式WS-NTs合成技术将在使用过渡金属二硫属化物纳米管制造器件中发挥核心作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验