Xu Qi, Gao Ran, Wang Fei, Cheng Zhaohui, Cui Yi, Li Zhipei, Guo Dong, Chang Huan, Zhou Sitong, Zhang Qi, Pan Xiaolong, Wu Tianze, Xu Zhen, Xin Xiangjun
Opt Lett. 2024 Oct 15;49(20):5767-5770. doi: 10.1364/OL.535092.
Intensity modulation direct detection (IM/DD) orbital angular momentum (OAM) mode division multiplexing (MDM) technology can greatly expand the capacity of a communication system, which is a promising solution for the next generation of high-speed passive optical networks (PONs). However, there are serious obstacles such as mode coupling, device nonlinear impairment, and quantization noise in an IM/DD OAM-MDM system with a low-resolution digital-to-analog converter (DAC). In this Letter, we propose a novel, to the best of our knowledge, end-to-end (E2E) learning scheme based on a double residual feature decoupling network (DRFDnet) emulator with joint probabilistic shaping (PS) and noise shaping (NS) for the OAM-MDM IM/DD transmission. Our DRFDnet emulator can accurately build a complex nonlinear model of an OAM-MDM system by separating the signal impairments into linear and nonlinear. Meanwhile, a DRFDnet-based E2E scheme for joint PS and NS is presented with the aim of compensating the signal impairment for the OAM-MDM IM/DD system. An experiment is carried out on a 200 Gbit/s PON system based on the OAM-MDM IM/DD transmission. The experimental results demonstrate that the proposed DRFDnet-based joint PS and NS scheme is a promising solution to effectively mitigate nonlinear distortions and outperforms the CGAN-based joint PS and NS scheme and traditional joint PS and NS scheme with receiver sensitivity improvements of 1.2 dBm and 2.5 dBm under hard-decision forward error correction (HD-FEC) thresholds, respectively. Our experimental results demonstrate that the proposed DRFDnet emulator-based E2E learning scheme is a viable candidate for future PON.
强度调制直接检测(IM/DD)轨道角动量(OAM)模式分割复用(MDM)技术能够极大地扩展通信系统容量,是下一代高速无源光网络(PON)的一种很有前景的解决方案。然而,在采用低分辨率数模转换器(DAC)的IM/DD OAM-MDM系统中,存在诸如模式耦合、器件非线性损伤和量化噪声等严重障碍。在本信函中,据我们所知,我们提出了一种基于双残差特征解耦网络(DRFDnet)模拟器的新颖的端到端(E2E)学习方案,该方案用于OAM-MDM IM/DD传输,并结合了联合概率整形(PS)和噪声整形(NS)。我们的DRFDnet模拟器能够通过将信号损伤分离为线性和非线性来准确构建OAM-MDM系统的复杂非线性模型。同时,提出了一种基于DRFDnet的用于联合PS和NS的端到端方案,旨在补偿OAM-MDM IM/DD系统的信号损伤。基于OAM-MDM IM/DD传输在200 Gbit/s PON系统上进行了实验。实验结果表明,所提出的基于DRFDnet的联合PS和NS方案是有效减轻非线性失真的一种很有前景的解决方案,并且在硬判决前向纠错(HD-FEC)阈值下,分别比基于条件生成对抗网络(CGAN)的联合PS和NS方案以及传统联合PS和NS方案的接收灵敏度提高了1.2 dBm和2.5 dBm。我们的实验结果表明,所提出的基于DRFDnet模拟器的端到端学习方案是未来PON的一个可行候选方案。