Suppr超能文献

神经特征融合场:自监督二维图像表示的三维蒸馏

Neural Feature Fusion Fields: 3D Distillation of Self-Supervised 2D Image Representations.

作者信息

Tschernezki Vadim, Laina Iro, Larlus Diane, Vedaldi Andrea

机构信息

Visual Geometry Group, University of Oxford.

NAVER LABS Europe.

出版信息

Proc Int Conf 3D Vis. 2023 Feb 22;2022. doi: 10.1109/3DV57658.2022.00056. eCollection 2022 Sep 16.

Abstract

We present Neural Feature Fusion Fields (N3F), a method that improves dense 2D image feature extractors when the latter are applied to the analysis of multiple images reconstructible as a 3D scene. Given an image feature extractor, for example pre-trained using self-supervision, N3F uses it as a teacher to learn a student network defined in 3D space. The 3D student network is similar to a neural radiance field that distills said features and can be trained with the usual differentiable rendering machinery. As a consequence, N3F is readily applicable to most neural rendering formulations, including vanilla NeRF and its extensions to complex dynamic scenes. We show that our method not only enables semantic understanding in the context of scene-specific neural fields without the use of manual labels,but also consistently improves over the self-supervised 2D baselines. This is demonstrated by considering various tasks, such as 2D object retrieval, 3D segmentation, and scene editing, in diverse sequences, including long egocentric videos in the EPIC-KITCHENS benchmark. Project page: https://www.robots.ox.ac.uk/~vadim/n3f/.

摘要

我们提出了神经特征融合场(N3F),这是一种在将密集二维图像特征提取器应用于可重建为三维场景的多幅图像分析时对其进行改进的方法。给定一个图像特征提取器,例如使用自监督进行预训练的提取器,N3F将其用作教师来学习在三维空间中定义的学生网络。三维学生网络类似于一个神经辐射场,它提炼上述特征,并且可以使用常见的可微渲染机制进行训练。因此,N3F很容易应用于大多数神经渲染公式,包括普通的神经辐射场(NeRF)及其对复杂动态场景的扩展。我们表明,我们的方法不仅能够在不使用手动标签的情况下在特定场景神经场的背景下实现语义理解,而且始终优于自监督二维基线。这在考虑各种任务时得到了证明,例如二维物体检索、三维分割和场景编辑,这些任务在不同的序列中进行,包括EPIC-KITCHENS基准中的长第一人称视角视频。项目页面:https://www.robots.ox.ac.uk/~vadim/n3f/

相似文献

4
SSR-2D: Semantic 3D Scene Reconstruction From 2D Images.SSR-2D:从二维图像进行语义三维场景重建
IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):8486-8501. doi: 10.1109/TPAMI.2024.3410032. Epub 2024 Nov 6.
7
3D Snapshot: Invertible Embedding of 3D Neural Representations in a Single Image.
IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):11524-11531. doi: 10.1109/TPAMI.2024.3411051. Epub 2024 Nov 6.
8
Point-to-Pixel Prompting for Point Cloud Analysis With Pre-Trained Image Models.使用预训练图像模型进行点云分析的点到像素提示
IEEE Trans Pattern Anal Mach Intell. 2024 Jun;46(6):4381-4397. doi: 10.1109/TPAMI.2024.3354961. Epub 2024 May 7.
10
Baking Neural Radiance Fields for Real-Time View Synthesis.用于实时视图合成的烘焙神经辐射场
IEEE Trans Pattern Anal Mach Intell. 2025 May;47(5):3310-3321. doi: 10.1109/TPAMI.2024.3381001. Epub 2025 Apr 8.

本文引用的文献

1
The EPIC-KITCHENS Dataset: Collection, Challenges and Baselines.EPIC-KITCHENS 数据集:采集、挑战与基准。
IEEE Trans Pattern Anal Mach Intell. 2021 Nov;43(11):4125-4141. doi: 10.1109/TPAMI.2020.2991965. Epub 2021 Oct 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验