Suppr超能文献

双亲性装甲超疏水表面对相变诱导的润湿转变的长期抗性

Long-Term Resistance to Phase Change-Induced Wetting Transition on Biphilic Armored Superhydrophobic Surfaces.

作者信息

Liu Zhenda, Wang Dagui, Zhang Wei, Gao Shan, Shen Yang, Shi Zhenxu, Lu Binyang, Wang Dehui, Deng Xu

机构信息

Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China.

Sichuan Key Technology Engineering Research Center for All-electric Navigable Aircraft, Guanghan, Sichuan, 618307, P. R. China.

出版信息

Small. 2024 Dec;20(51):e2406072. doi: 10.1002/smll.202406072. Epub 2024 Oct 15.

Abstract

Material surfaces maintaining a liquid super-repellent is crucial in fields such as anti-fouling, drag reduction, and heat transfer. Superhydrophobic surfaces provide an effective approach but suffer from phase change-induced wetting transitions, hindering their practical applications. In this work, Biphilic armored superhydrophobic surfaces (BASS) are designed by integrating hydrophilic interconnected surface frames with superhydrophobic nanostructures. The hydrophilic top of the frame provides spatial selectivity for condensate droplet nucleation, and superhydrophobic nanostructures enable staying dry. Further growth, coalescence, jumping, and roll-off of the condensate droplets on BASS, show remarkable resistance to phase change-induced wetting transition. It still maintains stable superhydrophobicity when exposed to 100 °C of steam for 240 h, at least two orders of magnitude improvement over traditional superhydrophobic surfaces. Such a designing BASS provides an effective approach to address the phase change-induced wetting transition, thereby extending the practical application in the fields of condensation heat transfer, anti-fouling, and fluid transportation of superhydrophobic surfaces.

摘要

保持液体超疏性的材料表面在防污、减阻和传热等领域至关重要。超疏水表面提供了一种有效方法,但会因相变引起润湿转变,阻碍其实际应用。在这项工作中,通过将亲水性互连表面框架与超疏水纳米结构相结合,设计出了双亲性装甲超疏水表面(BASS)。框架的亲水性顶部为冷凝液滴成核提供空间选择性,超疏水纳米结构使其保持干燥。冷凝液滴在BASS上的进一步生长、聚结、跳跃和滚落,显示出对相变引起的润湿转变具有显著抗性。当暴露于100°C的蒸汽中240小时时,它仍保持稳定的超疏水性,比传统超疏水表面至少提高两个数量级。这种设计的BASS提供了一种有效方法来解决相变引起的润湿转变问题,从而扩展了超疏水表面在冷凝传热、防污和流体输送领域的实际应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验