Suppr超能文献

通过聚结诱导的润湿转变实现疏水粗糙表面的自清洁

Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition.

作者信息

Zhang Kaixuan, Li Zhen, Maxey Martin, Chen Shuo, Karniadakis George Em

机构信息

School of Aerospace Engineering and Applied Mechanics , Tongji University , Shanghai 200092 , China.

Division of Applied Mathematics , Brown University , Providence , Rhode Island 02912 , United States.

出版信息

Langmuir. 2019 Feb 12;35(6):2431-2442. doi: 10.1021/acs.langmuir.8b03664. Epub 2019 Jan 25.

Abstract

The superhydrophobic leaves of a lotus plant and other natural surfaces with self-cleaning function have been studied intensively for the development of artificial biomimetic surfaces. The surface roughness generated by hierarchical structures is a crucial property required for superhydrophobicity and self-cleaning. Here, we demonstrate a novel self-cleaning mechanism of textured surfaces attributed to a spontaneous coalescence-induced wetting transition. We focus on the wetting transition as it represents a new mechanism, which can explain why droplets on rough surfaces are able to change from the highly adhesive Wenzel state to the low adhesion Cassie-Baxter state and achieve self-cleaning. In particular, we perform many-body dissipative particle dynamics simulations of liquid droplets (with a diameter of 89 μm) sitting on mechanically textured substrates. We quantitatively investigate the wetting behavior of an isolated droplet as well as coalescence of droplets for both Cassie-Baxter and Wenzel states. Our simulation results reveal that droplets in the Cassie-Baxter state have much lower contact angle hysteresis and smaller hydrodynamic resistance than droplets in the Wenzel state. When small neighboring droplets coalesce into bigger ones on textured hydrophobic substrates, we observe a spontaneous wetting transition from the Wenzel state to the Cassie-Baxter state, which is powered by the surface energy released upon coalescence of the droplets. For superhydrophobic surfaces, the released surface energy may be sufficient to cause a jumping motion of droplets off the surface, in which case adding one more droplet to the coalescence may increase the jumping velocity by one order of magnitude. When multiple droplets are involved, we found that the spatial distribution of liquid components in the coalesced droplet can be controlled by properly designing the overall arrangement of droplets and the distance between them. These findings offer new insights for designing effective biomimetic self-cleaning surfaces by enhancing spontaneous Wenzel-to-Cassie wetting transitions, and additionally, for developing new noncontact methods to manipulate liquids inside the small droplets via multiple-droplet coalescence.

摘要

莲花植物的超疏水叶片以及其他具有自清洁功能的天然表面已被深入研究,以用于人造仿生表面的开发。由分级结构产生的表面粗糙度是超疏水性和自清洁所需的关键特性。在此,我们展示了一种纹理表面的新型自清洁机制,该机制归因于自发聚结诱导的润湿转变。我们关注润湿转变,因为它代表了一种新机制,这可以解释为什么粗糙表面上的液滴能够从高粘附性的文泽尔状态转变为低粘附性的卡西 - 巴克斯特状态并实现自清洁。特别是,我们对位于机械纹理化基底上的液滴(直径为89μm)进行了多体耗散粒子动力学模拟。我们定量研究了孤立液滴的润湿行为以及卡西 - 巴克斯特状态和文泽尔状态下液滴的聚结情况。我们的模拟结果表明,卡西 - 巴克斯特状态下的液滴比文泽尔状态下的液滴具有更低的接触角滞后和更小的流体动力学阻力。当小的相邻液滴在纹理化疏水基底上聚结形成更大的液滴时,我们观察到从文泽尔状态到卡西 - 巴克斯特状态的自发润湿转变,这是由液滴聚结时释放的表面能驱动的。对于超疏水表面,释放的表面能可能足以导致液滴从表面跳跃运动,在这种情况下,向聚结中再添加一个液滴可能会使跳跃速度增加一个数量级。当涉及多个液滴时,我们发现通过适当设计液滴的整体排列及其之间的距离,可以控制聚结液滴中液体成分的空间分布。这些发现为通过增强文泽尔到卡西自发润湿转变来设计有效的仿生自清洁表面提供了新的见解,此外,还为开发通过多液滴聚结来操纵小液滴内液体的新非接触方法提供了新见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验