Paneru Tirth Raj, Chaudhary Manoj Kumar, Joshi Bhawani Datt, Tandon Poonam
Department of General Science, Far Western University, Mahendranagar, 10400, Nepal.
Department of Physics, University of Lucknow, Uttar Pradesh, Lucknow, 226007, India.
J Mol Model. 2024 Oct 15;30(11):378. doi: 10.1007/s00894-024-06146-1.
Screening of cocrystals of active pharmaceutical ingredients is important in the development of pharmaceutical compounds because it improves bioavailability, stability, solubility, and many other physicochemical properties. In this work, quantum chemical calculations were utilized for the computational evaluation of the cocrystal screening of benznidazole (BZN) API via hydrogen bonding with four coformers (maleic acid, malonic acid, oxalic acid, and salicylic acid), and they contain carboxylic groups. The nitrogen of the imidazole ring in benznidazole and the carboxylic group of the coformer form a hetero-synthon connected by a strong hydrogen bond. The strength of the hydrogen bonding interaction O-H…N was measured using various tools. It was found that in comparison to BZN cocrystals with malonic acid, oxalic acid, and salicylic acid, the O-H…N interaction in the BZN-maleic acid cocrystal had higher interaction energy, indicating it had stronger hydrogen bonding. The strength of the hydrogen bond O-H…N for synthons was discovered to be more beneficial than the C-H…O interaction, as confirmed by ESP analysis. The BZN-salicylic acid cocrystal was found to be more reactive and polarizable, whereas the BZN-malonic acid cocrystal was more stable. Cocrystals of benznidazole exhibited better physicochemical characteristics than API benznidazole, as indicated by electron transition properties between the most significant orbitals.
The computational evaluation for the screening of benznidazole cocrystals was performed in Gaussian 16 software using density functional theory (DFT) with the hybrid functional B3LYP and the basis set 6-311 + + G(d,p). The UV-Vis absorption spectrum in solvent water was analyzed using the TD-DFT/6-311 + + G(d,p) method to determine the influence of the solvent in cocrystals using a polarizable continuum model. The strength of the hydrogen bonding interactions O-H…N in each of those mentioned cocrystals was used to screen the cocrystals using tools such as thermodynamic probability, ESP analysis, QTAIM analysis, and NBO analysis. The pairing energy of interaction was measured by determining H-bond donor ( ) and H-bond acceptor ) parameters for hydrogen bonds from maxima and minima on the ESP surface. GaussView 06 software was used to create, visualize, and plot the optimized structure of the cocrystal and HOMO-LUMO orbitals. The AIMALL (10.05.04) software package generated the molecular graph for intra- and intermolecular interactions. The RDG-scatter plot, MEP map, and ELF plot were rendered from Multiwfn 8.0 and VMD 1.9.1 software.
在药物化合物的研发中,对活性药物成分共晶体的筛选很重要,因为它能提高生物利用度、稳定性、溶解度以及许多其他物理化学性质。在本研究中,利用量子化学计算对苯硝唑(BZN)原料药与四种共形成物(马来酸、丙二酸、草酸和水杨酸,它们均含有羧基)通过氢键形成的共晶体进行筛选的计算评估。苯硝唑中咪唑环的氮原子与共形成物的羧基形成通过强氢键连接的异合成子。使用各种工具测量了氢键相互作用O-H…N的强度。结果发现,与BZN与丙二酸、草酸和水杨酸形成的共晶体相比,BZN-马来酸共晶体中的O-H…N相互作用具有更高的相互作用能,表明其氢键更强。静电势(ESP)分析证实,对于合成子而言,氢键O-H…N的强度比C-H…O相互作用更有利。发现BZN-水杨酸共晶体更具反应性和极化性,而BZN-丙二酸共晶体更稳定。如最重要轨道之间的电子跃迁性质所示,苯硝唑的共晶体表现出比苯硝唑原料药更好的物理化学特性。
在高斯16软件中使用密度泛函理论(DFT)和混合泛函B3LYP以及基组6-311++G(d,p)对苯硝唑共晶体的筛选进行计算评估。使用TD-DFT/6-311++G(d,p)方法并采用极化连续介质模型分析溶剂水中的紫外可见吸收光谱,以确定溶剂对共晶体的影响。使用诸如热力学概率、ESP分析、量子拓扑原子分子理论(QTAIM)分析和自然键轨道(NBO)分析等工具,通过上述共晶体中每种O-H…N氢键相互作用的强度来筛选共晶体。通过从ESP表面的最大值和最小值确定氢键的氢键供体( )和氢键受体( )参数来测量相互作用的配对能。使用高斯视图06软件创建、可视化并绘制共晶体和最高占据分子轨道-最低未占据分子轨道(HOMO-LUMO)轨道的优化结构。AIMALL(10.05.04)软件包生成分子内和分子间相互作用的分子图。RDG散点图、分子静电势(MEP)图和电子定域函数(ELF)图由Multiwfn 8.0和VMD 1.9.1软件绘制。