Suppr超能文献

视频多导睡眠图:一种用于睡眠分期的智能非接触式监测系统。

Video-PSG: An Intelligent Contactless Monitoring System for Sleep Staging.

作者信息

Wang Qiongyan, Cheng Hanrong, Wang Wenjin

出版信息

IEEE Trans Biomed Eng. 2025 Mar;72(3):965-977. doi: 10.1109/TBME.2024.3480813. Epub 2025 Feb 20.

Abstract

Polysomnography (PSG) is the gold standard for sleep staging in clinics, but its skin-contact nature makes it uncomfortable and inconvenient to use for long-term sleep monitoring. As a complementary part of PSG, the video cameras are not utilized to their full potential, only for manual check of simple sleep events, thereby ignoring the potential for physiological and semantic measurement. This leads to a pivotal research question: Can camera be used for sleep staging, and to what extent? We developed a camera-based contactless sleep staging system in the Institute of Respiratory Diseases and created a clinical video dataset of 20 adults. The camera-based feature set, derived from both physiological signals (pulse and breath) and motions all measured from a video, was evaluated for 4-class sleep staging (Wake-REM-Light-Deep). Three optimization strategies were proposed to enhance the sleep staging accuracy: using motion metrics to prune measurement outliers, creating a more personalized model based on the baseline calibration of waking-stage physiological signals, and deriving a specialized feature for REM detection. It achieved the best accuracy of 73.1% (kappa = 0.62, F1-score = 0.74) in the benchmark of five sleep-staging classifiers. Notably, the system exhibited high accuracy in predicting the overall sleep structure and subtle changes between different sleep stages. The study demonstrates that camera-based contactless sleep staging is a new value stream for sleep medicine, which also provides clinical and technical insights for future optimization and implementation.

摘要

多导睡眠图(PSG)是临床睡眠分期的金标准,但其需要接触皮肤的特性使其在用于长期睡眠监测时既不舒适也不方便。作为PSG的补充部分,摄像机未得到充分利用,仅用于人工检查简单的睡眠事件,从而忽略了生理和语义测量的潜力。这引发了一个关键的研究问题:摄像机能否用于睡眠分期,以及能达到何种程度?我们在呼吸疾病研究所开发了一种基于摄像头的非接触式睡眠分期系统,并创建了一个包含20名成年人的临床视频数据集。对从视频中测量的生理信号(脉搏和呼吸)和动作所衍生的基于摄像头的特征集进行了4类睡眠分期(清醒-快速眼动-浅睡眠-深睡眠)的评估。提出了三种优化策略来提高睡眠分期的准确性:使用运动指标来剔除测量异常值,基于清醒阶段生理信号的基线校准创建更个性化的模型,以及为快速眼动检测导出专门的特征。在五个睡眠分期分类器的基准测试中,它达到了73.1%的最佳准确率(kappa = 0.62,F1分数 = 0.74)。值得注意的是,该系统在预测整体睡眠结构和不同睡眠阶段之间的细微变化方面表现出很高的准确性。这项研究表明,基于摄像头的非接触式睡眠分期是睡眠医学的一个新的价值领域,也为未来的优化和实施提供了临床和技术见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验