Jin Youngho, Moon Joon Ha, Seong Honggyu, Kim Geongil, Yoo Hyerin, Jung Taejung, Choi Jaewon
Department of Chemistry and Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju 52828, South Korea.
Nano Lett. 2024 Nov 13;24(45):14176-14182. doi: 10.1021/acs.nanolett.4c02858. Epub 2024 Oct 15.
With the growing interest in energy storage, significant research has focused on finding suitable anode materials for sodium-ion batteries (SIBs). While developing high-capacity nanosized metal sulfides, issues like low stability and rapid initial capacity decline are common. Instead of maintaining steady capacity, they also tend to exhibit an increase in discharge capacity as cycling continues. We introduce CNT-CuS, featuring CuS nanoplates integrated onto the surface of MWCNTs, and assess its electrochemical properties for SIBs. CuS initially exhibited a rapid decrease in capacity and then showed increased capacity. In contrast, CNT-CuS demonstrated a stable capacity of 344.8 mAh g at 2.0 A g over 800 cycles, close to the theoretical capacity with capacitive behavior. This paper carried out analysis using data from in situ EIS and overpotential data from GITT to explain the different outcomes between the CuS and CNT-CuS experiments. These results show that CNT-CuS is a suitable anode material for SIBs.
随着对能量存储的兴趣日益增长,大量研究集中在寻找适合钠离子电池(SIBs)的负极材料。在开发高容量纳米级金属硫化物时,低稳定性和初始容量快速下降等问题很常见。它们不是保持稳定的容量,而是随着循环的继续,放电容量也往往会增加。我们引入了CNT-CuS,它具有整合在多壁碳纳米管(MWCNTs)表面的CuS纳米片,并评估其用于SIBs的电化学性能。CuS最初表现出容量的快速下降,然后容量增加。相比之下,CNT-CuS在2.0 A g下经过800次循环显示出344.8 mAh g的稳定容量,接近具有电容行为的理论容量。本文使用原位电化学阻抗谱(EIS)数据和恒电流间歇滴定技术(GITT)的过电位数据进行分析,以解释CuS和CNT-CuS实验之间的不同结果。这些结果表明,CNT-CuS是一种适合SIBs的负极材料。