Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Ningbo 315211, China.
Anal Chem. 2024 Oct 29;96(43):17192-17200. doi: 10.1021/acs.analchem.4c02929. Epub 2024 Oct 15.
Carbapenem-resistant (CRKP) infections pose a significant threat to human health. Fast and accurate prediction of carbapenem resistance and carbapenemase genotype is critical for guiding antibiotic treatment and reducing mortality rates. In this study, we present a novel method using Al-MOF/TiO@Au cubic heterostructures for the metabolic analysis of intact bacterial cells, enabling rapid diagnosis of CRKP and its carbapenemases genotype. The Al-MOF/TiO@Au cubic composites display strong light absorption and high surface area, facilitating the in situ effective extraction of metabolic fingerprints from intact bacterial cells. Utilizing this method, we rapidly and sensitively extracted metabolic fingerprints from 169 clinical isolates of obtained from patients. Machine learning analysis of the metabolic fingerprint changes successfully distinguishes CRKP from the sensitive strains, achieving the high area under the curve (AUC) values of 1.00 in both training and testing sets based on the 254 / features, respectively. Additionally, this platform enables rapid carbapenemase genotype discrimination of CRKP for precision antibiotic therapy. Our strategy holds great potential for swift diagnosis of CRKP and carbapenemase genotype discrimination, guiding effective management of CRKP bacterial infections in both hospital and community settings.
耐碳青霉烯肠杆菌科(CRKP)感染对人类健康构成重大威胁。快速准确地预测碳青霉烯耐药性和碳青霉烯酶基因型对于指导抗生素治疗和降低死亡率至关重要。在本研究中,我们提出了一种使用 Al-MOF/TiO@Au 立方异质结构进行完整细菌细胞代谢分析的新方法,能够快速诊断 CRKP 及其碳青霉烯酶基因型。Al-MOF/TiO@Au 立方复合材料具有较强的光吸收和高表面积,有利于从完整细菌细胞中就地有效提取代谢指纹。利用该方法,我们从 169 例患者来源的临床分离株中快速、灵敏地提取了代谢指纹。代谢指纹变化的机器学习分析成功地区分了 CRKP 与敏感株,基于 254 个特征,在训练集和测试集的 AUC 值均达到 1.00。此外,该平台还能够快速区分 CRKP 的碳青霉烯酶基因型,为精准抗生素治疗提供指导。我们的策略在快速诊断 CRKP 和碳青霉烯酶基因型鉴别方面具有巨大潜力,可指导医院和社区环境中 CRKP 细菌感染的有效管理。